
Fault-Tolerant Wait-Free

Shared Objects**

Prasad Jayanti
Tushar Deepak Chandra*

Sam Toueg

TR 92-1298

(Revision of TR 92-1281, April 1992)
August 1992

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

**A preliminary version of this will appear in the proceedings of the 33rd Annual
Symposium on Foundations of Computer Science, October 1992.
**Research supported by NSF grants CCR-8901780 and CCR-9102231,
DARPA/NASA Ames grant NAG 2-593 and grants form the IBM Endicott

Programming Laboratory.
*Also supported by an IBM graduate fellowship.

Fault-tolerant Wait-free Shared Objects *t

Prasad Jayanti Tushar Deepak Chandra _

{prasad, chandra, sam}@cs.cornell.edu

Department of Computer Science

Cornell University

Ithaca, New York 14853

August 21, 1992

Sam Toueg

Abstract

A concurrent system consists of processes and shared objects. Previous research

focused on the problem of tolerating process failures. We study the complementary
problem of tolerating object failures.

We divide object failures into two broad classes: responsive and non-responsive.

With responsive failures, a faulty object responds to every invocation, but responses

may be incorrect. With non-responsive failures, a faulty object may also "hang" without

responding. For each class, we consider crash, omission, and arbitrary types of failures.

For each type of failure, we are seeking a universal implementation for]ault-tolerant

wait-free shared objects. We present (deterministic) implementations for all types of

responsive failures, including arbitrary failures. In contrast, we show that even the most

benign type of non-responsive failures requires the use of randomization.

Of special interest is the problem of implementing fault-tolerant objects using only

objects of the same type. We present such fault-tolerant selfimplementations for many
common object types.

Graceful degradation is a desirable property of fault-tolerant implementations: the

implemented object never fails more severely than the base objects it is derived from,

even if all the base objects fail. For several failure models, we show whether this

property can be achieved, and, if so, how.

In addition to the above possibility/impossibillty results, we also consider the re-

source complexity of fault-tolerant implementations. In many cases, we present lower

bounds and give matching algorithms.

*A preliminary version of this will appear in the proceedings of the 33rd Annual Symposium on Founda-
tions of Computer Science, October, 1992.

tReseaxch supported by NSF grants CCR-8901780 and CCR-9102231, DARPA/NASA Ames grant NAG-
2-593, grants from the IBM Endicott Programming Laboratory.

SAlso supported by an IBM graduate fellowship.

1 Introduction

1.1 Background and motivation

A concurrent system consists of processes communicating via shared objects. Examples

of shared object types include data structures such as read/write register, queue, and

set, and synchronization primitives such as test_Zset, fetch&add, and compare_swap.

Even though different processes may concurrently access a shared object, the object must

behave as if all these accesses occur in some sequential order. More precisely, the behavior

of a shared object must be linearizable [HW90]. One way to ensure linearizability is to

implement shared objects using critical sections [CHPT1]. This approach, however, is not

fault-tolerant: The crash of a process while in the critical section of a shared object can

permanently prevent the rest of the processes from accessing that object. This lack of fault-

tolerance led to the concept of wait-free implementations of shared objects. Informally, a

shared object is wait-free if every operation invocation on that object by every process is

guaranteed a response in finite time irrespective of the speed of the other processes, even if

some or all other processes in the system crash.

Thus, a concurrent system in which all shared objects are wait-free is resilient to pro-

cess crashes. However, such a system is not resilient to the failures of the shared objects

themselves. 1 For example, the "crash" of a single shared object stops all the processes that

need to access that object. Motivated by this observation, we study the problem of imple-

menting wait-free shared objects that are also fault-tolerant. With such objects, the system

is guaranteed to make progress despite process crashes and the failures of some underlying

objects. (To simplify notation, hereafter "object" denotes a "shared object".)

The problem addressed in this paper is novel. A preliminary version appeared in

[JCT92a], and a summary of the results in [JCT92b]. An independent work by Afek,

Greenberg, Merritt, and Taubenfeld [AGMT92] has the same general goal, but differs in

many respects. We present a brief comparison of the two works in Section 8.

1.2 Object failures

We divide object failures into two broad classes: responsive and non-responsive. With

responsive failures, a faulty object responds to every invocation, but responses may be in-

correct. With non-responsive failures, a faulty object may also "hang" without responding.

We divide responsive failures into three models: R-crash, R-omission, and R-arbitrary.

An object that fails by R-crash behaves correctly until it fails, and once it fails, it returns

a distinguished response _1_to every operation. As with R-crash, an object that fails by

R-omission may return a correct response or a 2-. However, even if it responds 2_ to a

process p, a subsequent operation by a different process q may get a correct response.

This behavior models an object O made of several components, some of which failed. The

1Even "software" objects have underlying hardware components. The software and/or the hardware

could be faulty.

operation by p "ran into" a failed component of 0 (and returned ±), while the later one

by q only encountered correct components of 0 (and returned a correct response). Finally,

objects experiencing R-arbitrary failures may "lie", i.e., return arbitrary responses.

Similarly, we divide non-responsive failures into crash, omission, and arbitrary. An

object that fails by crash behaves correctly until it fails, and once it fails, it stops responding.

An object that fails by omission may fail to respond to the invocations of an arbitrary subset

of processes, but continue to respond to the invocations of the remaining processes (forever).

The behavior of an object that experiences an arbitrary failure is completely unrestricted:

it may not respond, and even if it does, the response may be arbitrary.

1.3 Fault-tolerant objects

Let T be an object type and £ = (T1,T2,..., T,) be a list of object types (T_'s are not neces-

sarily distinct). A wait-free implementation of T from £ is a function 2" such that given any

distinct objects O1, O2, • •., On of type T1, T2,. •., Tn, respectively, O = 2"(O1, O2,. • •, On) is

an object of type T that behaves correctly if all Oi's behave correctly. Roughly speaking, an

object behaves correctly if it is wait-free and its behavior is consistent with its type. We say

O is a derived object of the implementation I, and O1, O2,..., O,_ are the base objects of O.

The resource complezity of 2" is n, the number of base objects required by 2" to implement

a derived object. Such a wait-free implementation 1: is t-tolerant for failure model M if O

behaves correctly even if at most t base objects of (9 fail by 2_4. In this Introduction, we

write "implementation" as a shorthand for "wait-free implementation".

2" is a self-implementation if T1 = T2 = T, = T. In other words, in a self-

implementation the base objects are of the same type as the derived object. For example,

consider the object type "2-process queue" (i.e., a queue that can be accessed by at most

two processes). In Section 5.3, we show that there is a t-tolerant self-implementation of

2-process queue for R-arbitrary failures. Intuitively, this means that using a set of wait-free

2-process queues, at most t of which may experience R-arbitrary failures, one can implement

a failure-free wait-free 2-process queue. Thus in a self-implementation fanlt-tolerance is

achieved through replication.

1.4 Results

To study whether a general object type has a t-tolerant implementation, we focus on two

particular object types: consensus 2 and r,giszer. Herlihy [Her91] and Plotkin [Pio89]

showed that one can implement a wait-free object of any type (for which a sequential im-

plementation exists) using only consensus and register objects. Thus, if consensus and

register have t-tolerant implementations, then every object type has a t-tolerant imple-
mentation.

2A consensus object supports two operations propose 0 and propose 1, and has the following sequential

specification: If the first operation on the object is propose _ (v 6 {0, 1}), then every operation is returned
the response v.

We first study the problem of tolerating responsive failures. We give t-tolerant self-

implementations of consensus for R-crash, R-omission, and R-arbitrary failures. For

R-crash and R-omission failures, our self-implementation is optimal requiring only t + 1

base consensus objects. For R-arbitrary failures, our self-implementation is efficient re-

quiring O(tlogt) base consensus objects. We also give t-tolerant self-implementations of

register for R-crash, R-omission, and R-arbitrary failures. Combining the above results

with [Her91, Plo89], we conclude that every object type T has a t-tolerant implementa-

tion (from consensus and register) for all responsive models of failures. Moreover, if T

implements consensus and register, then T has a t-tolerant self-implementation. This

implies that familiar object types such as (2-process) fetch&add, queue, stack, test_set_

and (N-process) compare&swap, move, swap have t-tolerant self-implementations even for

R-arbitrary failures!

What about tolerating non-responsive failures? We first show that there is no 1-

tolerant implementation of consensus even for crash failures, the most benign of the non-

responsive models of failures. 3 This immediately implies that any object type T that imple-

ments consensus such as fetch_add, queue, stack, test&set, compare&swap, move,

sticky-bit, swap, has no 1-tolerant implementation for crash failures. In contrast, we

show that register has a t-tolerant self-implementation even for arbitrary failures. Since

randomized implementations of consensus from register are well known (for example,

see [Aspg0]), the above result implies that every object type has a randomized t-tolerant

implementation from register even for arbitrary failures. In addition to these universality

and impossibility results, this paper contains the following results.

Consider a t-tolerant implementation for failure model 2_4. By definition, a derived

object of this implementation is guaranteed to behave correctly even if up to t base objects

fail by ¢_A. But what happens if more than t base objects fail? In general, the derived

object may experience a more severe failure than J_4. In other words, implementations

may "amplify" failures: derived objects may fail more severely than base objects. This

undesirable behavior is prevented by implementations that are "gracefully degrading". An

implementation is gracefully degrading for failure model M if it has the following property:

if base objects only fail by A,t, then derived objects also fail by M.

From a 1-tolerant gracefully degrading self-implementation of any object type T for a

failure model M, we show how to recursively construct a t-tolerant gracefully degrading self-

implementation of T for A,t. Thus, graceful degradation provides a method for automatically

increasing the fault-tolerance of an implementation.

Requiring graceful degradation may increase the cost of an implementation. For in-

stance, consider t-tolerant implementations of consensus for R-omission failures. We

present two such implementations. One uses only t + 1 base objects, but is not grace-

fully degrading. The other is gracefully degrading, but requires 2t + 1 base objects. In

fact, we show that graceful degradation for R-omission failures requires at least 2t + 1 base

3The impossibility of implementing a faultotoleraut consensus object from any finite llst of base objects,

one of which may crash, is shown using the impossibility of solving the consensus problem among a finite

number of processes, one of which may crash [FLP85, LAA87].

objects (this lower bound holds for every deterministic non-trivial type).

In some cases, graceful degradation cannot be even achieved. In particular, we show

that there is a large class of object types that have no gracefully degrading implementations

for R-crash. Intuitively, this means that whatever the implementation, the failure of the

implemented object will be more severe than R-crash, even if all its base objects can only

fail by R-crash. In other words, with R-crash, implementations necessarily amplify failures.

In contrast, we prove the following strong possibility result for R-omission: Every object

type has a t-tolerant gracefully degrading implementation from consensus and register
for R-omission.

We study the problem of translating severe failures into more benign failures [NT90].

In particular we show that given 3t + 1 (base) consensus objects, at most t of which may

experience R-arbitrary failures, we can implement a consensus object that can only fail

by R-omission. We prove that this translation from R-arbitrary to R-omission is resource

optimal.

We also show that arbitrary failures can be viewed as having two orthogonal compo-

nents: omission and R-arbitrary. Specifically, for any object type T, given any t-tolerant

self-implementations I I and 271 of T for omission failures and R-arbitrary failures respec-

tively, we show how to construct a t-tolerant self-implementation of T for arbitrary failures.

This decomposition simplifies the problem of tolerating arbitrary failures.

The paper is organized as follows. We give an informal system model and define several

types of object failures in Sections 2 and 3. We define the concepts of t-tolerant wait-free

implementation and graceful degradation in Section 4. We provide a formal presentation of

the material of Sections 2, 3, and 4 in Appendices A, B, and C, respectively. In Section 5,

we show how to implement objects that tolerate responsive failures. We present t-tolerant

implementations of consensus in Section 5.1, of register in Section 5.2, and of arbitrary

types in Section 5.3. The results on the cost of graceful degradation, and on the translation

between failure models are also presented in Section 5.1. In Section 6, we study the fea-

sibility of fault-tolerant implementations for non-responsive object failures. We first prove

that many common object types including consensus have no 1-tolerant implementations

for crash. In contrast, we show that reg±ster has a t-tolerant self-implementation even

for arbitrary failures. We finally show that every object type has a t-tolerant randomized

implementation from register even for arbitrary failures. In Section 7, we study graceful

degradation for the R-crash and R-omission failure models. We present impossibility re-

sults for R-crash and a universality result for R-omission. In Section 8, we present a brief

comparison with the results in [AGMT92]. In Appendix D, we define the object types that

appear in this paper.

2 Informal model

A concurrent system consists of processes and shared objects. Associated with each object

is a type. The type characterizes the expected behavior of the object. More precisely, an

object type T is a tuple (N, OP, RES, G), where N is an integer greater than one. OP and

RES are sets of operations and responses respectively, and G is a directed finite or infinite

graph in which each edge has a label of the form (olo, res) where op E OP and res E RES.

Intuitively, if (9 is an object of type T, then O supports the operations in OP and may be

shared by N processes (we say T is an N-process type). G specifies the expected behavior

of (9 in the absence of concurrent operations on O.

The vertices of G are the states of T. One state of T is the initial state. A state s of

T is reachable if there is a path in G from the initial state to s. We assume that every state

of T is reachable. A sequence S =(Opl,resl),(op2,res2), ...,(opl, resl) is consistent from a

state s of T if there is a path labeled S in G from the state s. S is consistent with respect

to T if it is consistent from the initial state of T. T is deterministic if for every state s of

T and every operation ol) E OP, there is at most one edge from s labeled (op, res). T is

non-deterininistic otherwise. T is finite if G is finite; T is infinite otherwise.

An object O of type T supports the set of procedures Apply(P, op, 0), for each pro-

cess P and operation op in OP(T). A process P invokes operation op on object O by

calling Apply(P, op, O), and ezecutes the operation by executing this procedure. The oper-

ation completes when the procedure terminates. The response for an operation is the value

returned by the procedure.

The sequential specification of an object O, given by its type, is not sufficient to predict

O's behavior in the presence of concurrent operations. To characterize such behavior, we

use the concept of linearizability [HW90, Lam86]. Roughly speaking, linearizability requires

every operation execution to appear to take effect instantaneously at some point in time

between its invocation and response. We make it more precise below.

An ezecution of a concurrent system is an interleaving of the steps of the processes

and the invocations and responses of the objects. Consider an execution E of a concurrent

system consisting of an object O that is shared by processes P1, P2,..., PN. The history

T/ of O in E is a set defined as follows: (Pi, op, v, ts,te) E 7"/iffin execution E, process

Pi invokes op at time ts, and this operation completes at time te returning the response

v. Further, (Pi,op,*,ts,cx)) E T/iff process Pi invokes o19 at time ts, and this operation

does not complete. A history is complete if it has no incomplete operations. Given two

op , v, ts, te) in a history, we say (Pi, oi), v, ts, te) precedesoperations (Pi, op, v, t,, re) and (Pi, ' ' ' '

(Pj,op', 'v,t,,t_)' ' if te < t s.I A complete history TI is linearizable with respect to a type T if

there is a sequencing S of the tuples (operations) in 7_ such that S respects the 'precedes'

relation, and is consistent with respect to T. A history 7-I is linearizable with respect to

a type T if a linearizable complete history T/' can be obtained from 7_ as follows: each

incomplete operation (Pi, op,*,ts,_) in TI is either removed or replaced by a complete

operation (Pi, op, v, t_, re), for some response v and time re. This definition captures the

notion that some incomplete operations in 7_ had a "visible" effect, while the others did
not.

Processes are asynchronous: i.e., there are no bounds on the relative speeds of the

processes. Furthermore, a process may crash: i.e., a process may stop at an arbitrary point

in an execution and never take any steps thereafter. The concept of wait-freedom was

introduced to cope with such processes (for example, see [Her91]). An object 0 is wait-free

in an executionE if either (i) E is finite, or (ii) every operation on O invoked by a process

that does not crash in E gets a response from O.

An object O is correct in execution E iff (i) O is wait-free in E, and (ii) the history of

O in E is linearizable with respect to the type of O. We say that O fails in E iff O is not

correct in E. Even a faulty object may satisfy certain properties which depend on the type

of failure it suffered. We postpone the definition of the failure models to next section.

Let T be an object type and £ = (T1,T2,...,Tn) be a list of object types (Ti's

are not necessarily distinct). A wait-free implementation of T from L is a function 2"

such that given any distinct objects O1,O2,...,On of type T1,T2,...,Tn, respectively,

0 = Z(01,02,...,On) is an object of type T with the following property: In every ex-

ecution, if O1, O2,..., On are correct, then O is correct. We say O is a derived object of

the implementation 27, and O1, O2,..., On are the base objects of O. All implementations

studied in this paper are wait-free. Hereafter we write "implementation" as shorthand for

"wait-free implementation".

We define the terms self-implementation of T and resource complexity as in Section

1.3. Our interest lies not just in implementations, but in implementations that tolerate the

failures of base objects. Thus, we also need to define a fault-tolerant implementation. We

present such a definition in Section 4, after defining failure models in Section 3.

3 Failure models

An object is only an abstraction with a multitude of possible implementations. For in-

stance, it may be built as a hardware module in a tightly coupled multi-processor system,

or as a server machine in a message passing distributed system. Whatever the implementa-

tion, the reality is that hardware components sometimes fail, and when this happens, the
implementation fails to provide the intended abstraction.

Object failures lead to undesirable system behavior. Therefore, it is important to

implement derived objects that behave correctly even if some of the base objects of the

implementation fail. The complexity of such a fault-tolerant implementation depends on the

failure model, i.e., the manner in which a failed base object departs from correct behavior.

In this paper, we define a spectrum of failure models that fall into two broad classes:

responsive and non-responsive.

As we will see, in most models of failure, an object 0 of type T may fail by returning a

response that is not allowed by its type; that is, a response not in RES(T). When a process

P gets such a response from (9, it knows that 0 is faulty. Thus, it is reasonable to assume
that P does not invoke operations on 0 thereafter. We restrict our attention to executions

in which this assumption holds.

3.1 Responsive models of failure

An object experiencing a responsive failure responds to every invocation, even though the

response may be incorrect. In other words, the object remains wait-free even after if it fails.

We describe below three increasingly severe models of responsive failures.

3.1.1 R-crash

R-crash is the most benign model of object failure. Informally, an object that fails by R-

crash behaves correctly until it fails, and once it fails, it returns a distinguished response

A_ to every invocation. This model is based on the premise that an object detects when it

becomes faulty.

More precisely, an object O fails in execution E by R-crash iffit fails in E, and satisfies

the following properties:

1. 0 is wait-free in E.

2. Every response from O in E is either _l_or one of the responses allowed by the type

of O. An operation that returns _Lis an aborted operation.

3. Let T/be the history of O in E. Every operation in 7_ that is preceded by an aborted

operation is itself an aborted operation.

4. Removing the aborted operations from 7_ results in a linearizabte history with respect

to the type of (9.

Property 3 is the "once _L, everafter _L" property of R-crash. Property 4 models the re-

quirement that (9 should behave correctly until it fails.

3.1.2 R-omlssion

Consider an implementation Z, and a derived object O of:/'. Even if the base objects of O

can only fail by R-crash, O itself may experience a more severe failure than R-crash. To see

this, suppose a base object b of (9 fail._ by R-crash. Consider a process P that invokes an

operation op on (9 and executes Apply(P,op, (9). If Apply(P, op, (9) accesses b, b returns _t_

to P. This may cause P's invocation of op on (9 to terminate and return 1. Now suppose

that another process Q later invokes some operation of on O, and that Apply(Q, of, O) is

not required to access b. Then, process Q cannot notice the failure ofb. So Q's invocation of

op on {9 terminates "normally" and returns a non-A_ response. Thus, O's behavior violates

the "once _L, everafter _l_" property of R-crash. Does this mean that O's failure is arbitrary?

We now argue that this is not the case.

Recall that after P gets _L, P refrains from accessing (9 again. To Q, this scenario

is indistinguishable from one in which P had crashed in the middle of the procedure

Apply(P, op, O), while accessing b. Since the implementation Z (from which O is derived)

is wait-free, O tolerates the apparent crash of P. Thus, O's response to Q must be correct.

So, the failure of O is more severe than R-crash, but is not completely arbitrary. The

R-omission model captures such a failure 4.

More precisely, an object O fails in execution E by R-omission iff it fails in E, and

satisfies the following properties:

1. O is wait-free in E.

2. Every response from O in E is either ± or one of the responses allowed by the type
of O.

, Let _ be the history of O in E. Replacing every aborted operation (P, op, l,t,,te)

in 7-I by an incomplete operation (P, o/9,., t,, c_) results in a linearizable history with

respect to the type of O.

3.1.3 R-arbitrary

An object O fails in ezecution E by R-arbitrary 5 iif it falls in E and is wait-free in E. In

other words, O responds to every invocation in E, but the history of O is not linearizable

with respect to the type of O.

3.2 Non-responsive models of failure

Each responsive model of failure has its non-responsive counter-part. The difference lies in

the fact that an object experiencing a non-responsive failure may also fail to respond to
invocations.

3.2.1 Crash

Crash is the most benign of all non-responsive models of failure. Informally, an object

subject to a crash failure behaves correctly until it fails (Property 1, below), and once it

fails, it never responds to any invocations (Property 2, below). More precisely, an object O

.fails in execution E by crash iif it falls in E, and satisfies the following properties:

1. The history of O in E is linearizable with respect to the type of O.

2. The total number of responses from O in E is finite.

4Formal justification for the R-omlssion model will be apparent in Section 7.
5For readability, we sometimes prefer writing "O experiences an R-arbitrary failure in E".

3.2.2 Omission

Omission failures are more severe than crash. An object O fails in execution E by omission

iff it fails in E, and the history of O in E is linearizable with respect to the type of O. In

particular, an object that fails by omission does not necessarily satisfy Property 2 of crash

model. Thus, an object that fails by omission may not respond to invocations from some

processes, but respond to invocations from others forever.

3.2.3 Arbitrary

The behavior of an object that experiences an arbitrary failure is completely unrestricted.

In particular, such an object may not respond to an invocation; even if it does, the response

may be arbitrary. More precisely, an object 19 fails in execution E by arbitrary iff it fails

in E.

4 Definition of fault-tolerant implementations

An implementation 2" of type T is t-tolerant for failure model _ if every derived object (9

of 2" has the following property: In every execution, if at most t base objects fail, and they

fail by MA, then 19 is correct.

An implementation 2" is gracefully degrading for failure model .M if every derived object

19 of 2" has the following property: In every execution, if all base objects that fall, fail by

AA, then either O is correct or it fails by ,_4.

Let O be a derived object of an implementation which is both t-tolerant and gracefully

degrading for failure model 2_4. The above definitions imply that: (i) if at most t base

objects of 19 fail, and they fail by 2_4, then 19 does not fail, and (ii) if more than t base

objects of 19 fail, and they fail by ¢_A, then 19 may fail, but it does not experience a more

severe failure than ,_4. Property (i) is guaranteed by t-tolerance, and property (ii) by

graceful degradation.

Gracefully degrading implementations can be easily composed as shown in the following

lemma. Given a list L of integers and an integer n, let MinSum(n, L) be the sum of the n

smallest integers in L.

Lemma 4.1 If a type T has a t-tolerant gracefully degrading implementation 2" from the

list T1,T2,... ,Tn of types for failure model _A, and each Ti (1 < i < n) has a ti-tolerant

gracefully degrading implementation 2"i from Til, Ti2, . . . , Tij_ for All, then T has a t t-tolerant

gracefully degrading implementation :_' from Tl l, T12,..., TI A , T21, • ••, T2 j2 , . . . , T_I , . . . , T,_jn

for ,AvI. In the above, t' = MinSum(t + 1, (tl + 1,t2 + 1,... ,t_ + 1)) - 1.

Proof (sketch) Define 2"(Oll,... ,Oljl,... ,Onl,... ,Onjn) : _(01,... ,OrL) where O1 =

2"1(011,012,..., 01il),..., On = :Z',,(0,_1, on2, • • •, on1,). Assume that each okt, if it fails, only

fails by _. Since 2"i is ti-tolerant, Oi fails only if at least tl + 1 objects among 0il,. •., 01j_

10

fail; furthermore, since 2"/is gracefully degrading, Oi fails only by A4. Similarly, since Z is

t-tolerant, Z(O1,..., On) fails only if at least t + 1 objects among O1,..., On fail. Thus,

for Z(01,..., On) to fail, at least MinSurn(t + 1, (tl + 1, t2 + 1,..., tn + 1)) objects among

o11, .. • ,ou1,.. •, on1,..., Onjn must fail. In other words, Z _ is a tt-tolerant implementation

of T from Tll,... Tnj,. Z l is gracefully degrading for A4 because 2" and each 2"/ (1 < i < n)

are gracefully degrading for 2_4. []

The above lemma can be used to enhance the fault-tolerance of a self-implementation.

This is the substance of the next corollary, obtained by setting Ti = T, ti = t, ji = n, and

2"/= 2" in the lemma.

Corollary 4.1 If a type T has a t-tolerant gracefully degrading self-implementation Z of

resource complexity n for a failure model .hA, then T has a (t 2 + 2t)-tolerant gracefully

degrading self-implementation Z t of resource complexity n 2 for .Ad.

Recursive application of the above corollary boosts the fault-tolerance of self-implementations.

Corollary 4.2 (Booster Lemma) If a type T has a 1-tolerant gracefully degrading self-

implementation of resource complexity k for a failure model A4, then T has a t-tolerant

gracefully degrading self-implementation of resource complexity O(t l°g2 k) for A4.

In Section 5.1.4, we illustrate how this corollary can be applied to construct a t-tolerant

self-implementation of consensus for R-arbitrary failures.

5 Tolerating responsive failures

Herlihy [Her91] and Plotkin [Plo89] showed that one can implement a (wait-free) object of

any type using only consensus and register objects. Therefore, if consensus and register

have t-tolerant implementations, then every object type has a t-tolerant implementation.

Hence we focus on fault-tolerant implementations of consensus and reg±ster.

5.1 Fault-tolerant implementation of consensus

In the following, we first define the object type N-consensus. We then present a t-tolerant

self-implementation of N-consensus that works for both R-crash and R-omission failures.

This implementation requires t + 1 base N-consensus objects, and is thus resource opti-

mal. Following that, we show how to translate R-arbitrary failures of N-consensus objects

to R-omission failures. Our translation is also proved to be resource optimal. Although

the above two results can be chained together to obtain a t-tolerant self-implementation of

N-consensus for R-arbitrary failures, the resultant self-implementation is not resource effi-

cient: it requires O(t 2) base consensus objects. We therefore present an alternative efficient

self-implementation of resource complexity O(t log t).

11

5.1.1 The object type N-consensus

N-consensus is an N-process object type that supports two operations, propose 0 and

propose 1, and has the following sequential specification: If the first operation invoked

is propose v, then every invocation (including the first) is returned the response v. The

following two propositions follow directly from definitions:

Proposition 5.1 An N-consensus object 0 is correct in ezecution E if and only if it is

wait-free and satisfies the following three properties in E:

• Validity: /f 0 returns a response v, and v E {0, 1}, then there was a prior invocation

of propose v on O.

• Agreement: If (9 returns vl, v2 to two invocations, and vl, v2 E (0, 1}, then vl = v2.

• Integrity: Every response of (9 is either 0 or I.

An N-consensus object (9 satisfies weak integrity in an execution in E itf every response of

(9 in E is either 0, 1, or l.

Proposition 5.2 Let (9 be an N-consensus object that fails in execution E. Object 0 fails

by R-omission in E if and only if it is wait-free, and satisfies validity, agreement, and weak

integrity in E.

In describing our implementations, we write loc := Propose(p,v, 0) 6 to denote that

process p invokes propose v on (9 and stores the response in its local variable loc.

5.1.2 Tolerating R-crash and R-omission failures

We present a t-tolerant serf-implementation of N-consensus for R-omission failures. The

resource complexity is t + 1, and is therefore optimal. Since R-omission failures are strictly

more severe than R-crash, this self-implementation also works for R-crash. However, it is

not gracefully degrading either for R-crash or for R-omission. In fact, we will see in Section

7 that N-consensus has no t-tolerant gracefully degrading implementation for R-crash. For

R-omission, however, we present a t-tolerant gracefully degrading self-implementation of

resource complexity 2t + 1. We also prove that 2t + I is a lower bound on the resource

complexity. In fact, this lower bound applies to every "non-trivial" deterministic object

type, not just to N-consensus; furthermore, it is not restricted to self-implementations.

Theorem 5.1 Figure I gives a t-tolerant self-implementation of N-consensus for R-omission

failures. The resource eomplezity of the implementation is t + 1 and is optimal.

6Throughout this paper, we write Proposo (with upper case "P') if the operation is on a derived object,

and propose (with lower case "p') if it is on a base object.

12

01,02,..., Ot+l : N-consensus objects

Procedure Propose(p, vv, O) /* vv E {0, 1} */

estirnatep, w, k : integer local to p

begin

estimate v := vv
fork := ltot+ldo

w := propose(p, estirnatev, Ok)

if w ¢ _1_then estimate v := w

return(estirnatep)
end

Figure 1: t-tolerant self-implementation of N-consensus for R-omission

Proof Let O be a derived N-consensus object of the implementation, and O1, O2,..., Ot+l

be its base objects. Consider an execution E in which at most t base objects fail by R-

omission, and the remaining objects are correct. We show that (9 is correct in E.

.

.

0 satisfies validity: An easy induction on k shows that if estimate v equals some value

u at any point in E, then there was a prior invocation (from some process q) of

Propose(q, u, O). The induction will use Proposition 5.2, and the fact that p does

not change estirnatep if a base object returns 2_.

0 satisfies agreement: Since at most t base objects fail, there is an Ok (1 < k < t+ 1)

that is correct. So Ok returns the same response w E {0, 1} to every process that

accesses it. This implies that for all p that access Ok, estimatep = w when p completes

the k th iteration of the loop. Since each base object in Ok+l,..., Ot+l is either correct

or fails by R-omission in E, by Propositions 5.1 and 5.2, each of these base objects

satisfies validity. From these facts, it is easy to conclude from the implementation that

estimate v never changes value from the (k + 1)st iteration onwards. Thus O returns

the same response w to every p.

3. O satisfies integrity: Obvious.

Since a base object that fails by R-omission remains wait-free, it is clear that (9 is wait-free

in E. By Proposition 5.1, O is correct in E. It is obvious that the resource complexity of
t + 1 of our self-implementation is optimal. []

The above (self) implementation is not gracefully degrading. For instance, suppose that

vv = 0 and vq = 1, and all the t + 1 base objects fail by R-crash initially. It is easy

to see that O returns 0 to p and 1 to q. Thus O does not satisfy agreement, and by

Proposition 5.2, the failure of O is more severe than R-omission. In fact, we will now show

that 2t + 1 is both a lower and upper bound on the resource complexity of a t-tolerant

13

gracefullydegrading self-implementation of N-consensus for R-omission 7. The gracefully

degrading self-implementation that requires 2t + 1 base objects is given in Figure 2.

O1,02, • • • , O2t+l : N-consensus objects

Procedure Propose(p, vp, O) /* vp E {0, 1} */

Vp[1..2t + 1], estimatep, w, k: integer local to p

begin

1 estimatep := vp
2 fork := lto2t+ldo

3 w := propose(p, estimatep, Ok)

4 V_[k] :=

5 if (w _/)A(w _ estimatep) then

6 estimatep := w

7 Vp[1... (k - 1)] := (±,±,...,±)

8 if Vp has more than t _1_'s then
9 return(±)

10 else return (estimate1,)
end

Figure 2: t-tolerant gracefully degrading self-implementation of N-consensus for R-omission

Claim 5.1 For every k, 1 < k < 2t + 1, at the end of the k th iteration of the for-loop

of Propose(p, vp, O) in Figure e, estimatep E {0, 1}, and Vp[1..k] contains only .J_'s and

estimatep %.

Proof By an easy induction on k.

Theorem 5.2 Figure 2 gives a t-tolerant gracefully degrading self implementation of N-consensus

for R-omission.

Proof Let O be a derived N-consensus object of the implementation, and O1,02,-.., Ot+l

be its base objects. Consider an execution E in which all base objects that fail, fail by R-
omission.

1. O is wait-free: Obvious since base objects that fail by R-omission remain wait-free.

2. O satisfies validity: An easy induction on k shows that if estimatep equals some value

u at any point in E, then there was a prior invocation (from some process q) of

Propose(q, u, O). The induction will use Proposition 5.2, and the fact that p does

not change estimate_, if a base object returns ±.

rAs will be shown later in Theorem 7.2, there is no t-tolerant gracefully degrading implementation of

N-consensus for R-crash.

14

.

.

5.

O satisfies agreement: Suppose, for a contradiction, there exist two processes p and

q such that Propose(p, vp, O) returns 0 and Propose(q, Vq, O) returns 1. From Claim

5.1, and lines 8, 9 of the algorithm, it follows that Vp has at least t -4-1 O's at the end

of the execution of Propose(p, vp, O) and Vq has at least t -4-1 l's at the end of the

execution of Propose(q, vq, O). This is possible only if there is a k (1 < k _ 2t÷l) such

that propose(p, estimatep, Ok) returned 0 and propose(q, estimateq, Ok) returned 1.
Thus O_ does not satisfy agreement. By Proposition 5.2, the failure of O_ in E is not

by R-omission, a contradiction.

O satisfies weak integrity: Obvious.

O satisfies integrity if at most t base objects fail: Let Okl,Ok_,-..,Ok_ (kl < k2 <

• .. < kt) be all the correct base objects. Since at most t fail, we have I _> t -4- 1. By

Proposition 5.1, Ok1 satisfies integrity and agreement. Thus, there is a v E {0, 1} such

that for all p, propose(p, estimatep, Ok_) returns v. Thus, for all p, estimatep = v at

the end of kl iterations of the for-loop in Propose(p, vp, O). Using this and Proposition

5.2, it is easy to verify that at the end of the execution of Propose(p, vp, O), Vp[ki]= v
and estimatep = v for all p and for all 1 < i < l. This implies, by fines 8, 9 of the

algorithm, that Propose(p, vp, O) returns v.

From 1, 2, 3, and 4 above, and Proposition 5.2, we conclude that either (9 is correct

in E, or (9 fails by R-omission in E. From 1, 2, 3, and 5 above, and Proposition 5.1, we

conclude that if at most t base objects of O fail in E, (9 is correct in E. Thus, Figure 2 is
a t-tolerant gracefully degrading self-implementation of N-consensus for R-omission. []

We now prove a general lower bound on the resource complexity of gracefully degrading

implementations for R-omission. Informally, a type T is trivial if it admits the following

implementation: there is a function f such that every Apply(P, o19,O) blindly returns f(op).

More precisely, T is trivial if there is a function f : OP(T) ---, RES(T) such that for every

sequence OPl, op2,...,opk of operations, (Opl , f(OPl)), (OP2, f(op2)), ..., (opt, f(opk)) is

consistent with respect to T. An object type is non-trivial if it is not trivial. The following
proposition is immediate from the definitions.

Proposition 5.3 Let T be a deterministic non-trivial object type, and fo : OP(T)

RES(T) be the .function such that for all op, (op, fo(op)) is consistent with respect to T. s

Then there exists a k >_ 1 and a sequence OPl,OP2,...,OPk,OPk+I of operations such that

(opt, f0(opl)), (op2, f0(op2)),..., (OPk, fo(opk)) is consistent with respect to T, but (opl, fo(opt)),

(0/92,/O(OP2)), ..., (Opk, fO(opk)), (opk+X, fO(Opk+l)) iS not.

Theorem 5.3 Let T be any deterministic non-trivial object type. The resource complexity
of any t-tolerant gracefully degrading implementation of T for R-omission is at least 2t + 1.

Proof Suppose T has a t-tolerant gracefully degrading implementation 2- from some fist

Tt,T2,...,T2t of object types for R-omlssion. Let O1,02,..., 02t be base objects of type

SNote that fo(op) is the response of an object of type T when op is the first operation applied to that

object.

15

Tt, T2,..., T2t, and let O = 27(Ot, 02,..., 02t) be the corresponding derived object (of type

T). Let f0 and opl,op2,...,opk,op_+l be as in Proposition 5.3. Consider the following

scenario in which two processes P and Q access the object O. At the start of the scenario,

object {9 is in the initial state, and all its base objects fail, as described below.

For objects Oi, 1 < i < t: Whenever P invokes an operation on Oi, it returns a correct

response to P and undergoes an appropriate change of state; but whenever Q invokes an

operation on Oi, it returns _l_ and does not undergo any change of state. For objects Oj,

t + 1 <__j < 2t: Whenever P invokes an operation on Oj, it returns _1_and does not undergo

any change of state; but whenever Q invokes an operation on Oj, it returns a correct

response to Q and undergoes an appropriate change of state.

Scenario S

1. Process Q executes the sequence Opl , op2,. • •, Opk of operations on (9. Let vl, v2,..., vk

be the corresponding responses.

2. Process P executes opk+l on O.

(All steps in Item 1 strictly precede every step in Item 2). Note that:

1. The failure of each base object is by R-omission.

2. The scenario S is indistinguishable to Q from a scenario s t in which O1,O2,..., Ot

fail as above, but Ot+l,0t+2,..., 02t are correct. Since O is derived from a t-tolerant

implementation, the responses to opl, op2,..., opk returned by Q in s _must be correct.

So the responses in S' must be fo(opt), fo(op2),..., fo(opk), respectively. Since S and

St are indistinguishable to Q, Q returns the same responses in S.

3. When P executes op on O, the manner in which objects have failed makes it impossible

for P to know whether Q previously executed any operations on O. So, the scenario

S is indistinguishable to P from a scenario S" in which (i) it is the first process to

invoke an operation on O, and (ii) only t base objects, namely Ot+l,0t+2,... ,02t,

fail. Since O is derived from a t-tolerant implementation, P must return the correct

response in S". So P must return f0(opk+t) in S". Since S is indistinguishable to P

from S", P also returns the response fo(opk+l) in S.

By Proposition 5.3, (o_1 , f0(opl)), (op2, f0(op2)),..., (opk, f0(o_k)), (opk+l, f(opk+l)) is

not consistent with respect to T. So, the history of object 0 in the above scenario is not

linearizable with respect to its type T. Thus, O does not satisfy Property 3 of K-omlssion

in Section 3.1.2. In other words, the failure of O is not by It-omission, even though the

base objects of (9 have only failed by It-omission. This implies that 27, the implementation

from which O is derived, is not gracefully degrading for It-omission. []

5.1.3 Translation from R-arbitrary to R-omission

A self-implementation 2" of object type T is a t-tolerant translation from a failure model

to a failure model ,M t for T if every derived object O of 2" satisfies the following property:

16

In everyexecutionE, if at most t base objects of (P fail, and fail by A4, then either O is

correct or it fails by _'. Note that if no base objects fail in E, then O does not fail either

(this follows from the definition of implementation).

In this section, we present a t-tolerant translation from R-arbitrary to R-omission for

N-consensus. We also show that its resource complexity, 3t+ 1, is optimal. This translation

can be used along with the t-tolerant self-implementation of N-consensus for R-omission

(seen in Section 5.1.2) to obtain a t-tolerant self-implementation of N-consensus for R-

arbitrary failures.

Since a consensus object that experiences an R-arbitrary failure may return a non-

binary response, we always "filter" the responses to get a binary response: procedure

f-propose(p, v, O) returns propose(p, v, O) if it is 0 or 1, and returns 0 otherwise.

A[1... 2t + 1],S[1...t] : r-consensus objects

Procedure Propose(p, vv, O)

countv[O..1], w, i, beliefp : integer local to p

begin

1 Phase 1: co tp[0..1] := (0,0)
2 fori:= ltoJt+ldo

3 w := _-p,:opose(p, vv, A[i])

4 countp[w] := countp[w] + 1

5 Phase 2: Choose belief v such that

 o ntp[beli h] > ou tp[fp].
6 fori:= ltotdo

7 if beliefp# f-propose(p, beliefp, B[i])then
8 return(l)

9 return(beliefp)
end

Figure 3: t-tolerant translation from R-arbitrary to R-omission for N-consensus

Let 0 be an N-consensus object derived from the translation in Figure 3. The base

objects of O are A[1...Jt + 1], B[1...t].

Claim 5.20 satisfies integrity in any execution in which all base objects of 0 are correct.

Proof Clear from the algorithm. []

Claim 5.30 is wait-free in amy execution in which all base objects of (9 are wait-free.

17

Proof Clear from the algorithm. []

In the following claims, let E be an execution in which at most t base objects experience

R-arbitrary failures, and the remaining are correct.

Claim 5.40 satisfies weak integrity in E.

Proof Clear from the algorithm. []

Claim 5.50 satisfies validity in E.

Proof Suppose O returns v E {0, 1} to the invocation Propose(p, vv, O) (from process p).

Then v = beliefv (by line 9), and countv[v] = countv[beliefv] > t+l (by line 5). So there is at

least one correct base object A[i] such that propose (p, vv, A[i]) returned v. By Proposition

5.1, A[i] satisfies validity. It follows that some process q invoked propose(q, Vq,A[i]) where

Vq = v. This implies that q invoked Propose(q, v, (9). []

Claim 5.60 satisfies agreement in E.

Proof Suppose O fails to satisfy agreement by returning v E {0,1} to some process p, and

to a different process q. O returns v to p implies v = beliefv. Similarly _ = beliefq. We

thus have beliefp _ beliefq. It is easy to verify that if all of A[1... 2t + 1] are correct, then

beliefv = beliefq. It follows that at least one of A[1... 2t + 1] fails.

Further, (9 returns v to p implies, for all 1 < i < t, propose(p, beliefv, B[i]) returns

beliefv = v to p. Similarly, for all I < i < t, propose(q, beliefq, B[i]) returns beliefq =

to q. Thus all t base objects B[1... t] fail by not satisfying agreement. Counting the failed

A[i]'s and B[i]'s, we have more than t failed base objects, a contradiction. []

From the above claims, and Propositions 5.1 and 5.2, we conclude that: (i) O is correct

in every execution in which all base objects of (9 are correct; and (ii) (9 is either correct

or it fails by R-omission in every execution in which at most t base objects of O fail by

R-arbitrary, and the remaining base objects are correct. Thus,

Theorem 5.4 Figure 3 presents a t-tolerant translation from R-arbitrary failures to R-

omission failures for N-consensus. The resource complexity of the translation is 3t + 1.

Theorem 5.5 The resource complexity of any translation Z from R-arbitrary to R-omission

for N-consensus is at least 3t + I.

Proof For a contradiction, assume the resource complexity of 27 is n _< 3t. We prove

the theorem through a series of claims, involving "indistinguishable" scenarios. Let O =

2"(Ol, o2,..., on). In the following, we say a process p accesses a base object oi if during the

execution of Propose(p, vp, (9), p executes propose(p,., oi).

18

Claim 5.7 Suppose p ezecutes Propose(p, 0, O) to completion. If all base objects are cor-

rect, then p accesses at least t + 1 base objects.

Proof Suppose the claim is false, and p accesses only oil,oi2,...,oi,, (m < t) before

completing Propose(p, 0,(9). Since all base objects are correct, O satisfies validity and

integrity. Hence Propose(p, 0, O) returns 0. Now consider the following two scenarios.

Scenario $I

1. p executes Propose(p, 0, O) to completion accessing only oil,oi2,...,oim (m < t).
Propose(p, 0, O) returns 0.

2. q executes Propose(q, 1, (.9) to completion.

Scenario $2

1. el,, oi2 ,. •., oi,. fall and behave as though they are accessed by p exactly as in scenario
$1. This is possible since m < t.

2. q executes Propose(q, 1, O) to completion.

Since no base objects fail in S1, O must be correct in S1. By Proposition 5.1, O satisfies

integrity and agreement. Thus Propose(q, 1, O) returns 0 in S1. Clearly S1 _.q S2 (we

write S1 _.q $2 to denote that Scenarios S1 and S2 are indistinguishable to process q). So

Propose(q, 1, O) returns 0 in S2 also, violating validity. By Propositions 5.1 and 5.2, (9 is

neither correct nor does it fail by R-omission. Since at most t base objects fail in $2, and

they fail by R-arbitrary, the translation 27 is incorrect, a contradiction. []

Claim 5.8 Consider

Scenario $3

1. p ezecutes Propose(p, 0, O) up to the point where it has accessed ezactly t base objects
Oi 1,0i2, • • • _ Oi, .

2. q ezecutes Propose(q, 1, (9) to completion.

Then Propose(q, 1, O) returns 1.

Proof Let S = {base objects accessed by q} - {oi_,oi2,...,oi,}. Let ojl,oj2,... ,oj_ be all

the base objects in S arranged in order of first invocation of q. Note that k < n - t <_ 2t.

Let S2' represent scenario $2 when m = t. Since at most t base objects fail in $2 ',

and they fail by R-arbitrary, O must either be correct or fail by R-omission. Hence, by

Propositions 5.1 and 5.2, O satisfies validity and weak integrity in S2'. So Propose(q, 1, O)

returns 1 or l in $2 r. Since S2 t _q 33, we conclude Propose(q, 1, O) returns 1 or _l_in S3.

Since no base object fails in $3, O must be correct. By Proposition 5.1, O satisfies integrity

in S3. So Propose(q, 1, O) returns either 0 or 1 in S3. Together with the above conclusion,
this implies the claim. []

19

Claim 5.9 Consider

Scenario $4

1. p executes Propose(p, 0, O) up to the point where it has accessed exactly t base objects

Oi I , 0i2, • • • ,Oit.

2. Let oj,,oj2,...,ojh be as defined above (note k _< 2t). q executes Propose(q, 1,0) up

to the point where it has accessed exactly {Oil , Oj2,... , Ojk_t }.

3. p completes the execution of Propose(p, O, (9).

Then Propose(p, O, (9) returns O.

Proof Consider

Scenario $5

1. p executes Propose(p, 0, O) up to the point where it has accessed exactly t base objects

OQ , Oi2 , • • • , Oil.

2. The base objects oil , oj2,... ,oj__ t fail and behave as though they are accessed by q

exactly as in 54.

3. p completes the execution of Propose(p, 0, O).

Since k < 2t, the number of base objects that fail in S5 = k - t _< t. Since they fail

by R-arbitrary in S5, either O is correct in S5, or O fails by R-omission in 55. Thus, by

Propositions 5.1 and 5.2, O satisfies validity and weak integrity in $5. So Propose(p, 0, O)

returns either 0 or _l_in $5. Since clearly $4 _p S5, Propose(p,0, O) returns either 0 or 1

in $4 also. However since no base object falls in $4, O is correct in $4, and by Proposition

5.1, it satisfies integrity in $4. Thus Propose(p, 0, O) returns 0 in S4. []

Claim 5.10 Consider

Scenario $6

1. p executes Propose(p, O, O) up to the point where it has accessed exactly t base objects

011,0i2, • • •, Oit .

2. q executes Propose(q, 1, O) to completion, returning I, by Claim 5.8.

3. Let oil ,oi2,... ,o1_ be as defined above (note k < 2t). {oj__,+,, oi__t+_,...,o1_ } fail

and behave as though they are never accessed by q.

_. p completes the execution of Propose(p, O, O).

Then Propose(p, O, O) returns O.

2O

Proof Note that $4 _r S6. By Claim 5.9, Propose(p, 0, O) returns 0 in S4. So Propose(p, 0, O)

returns 0 in $6. []

Prom the above claim, it is clear that O does not satisfy agreement in S6. Hence, by

Propositions 5.1 and 5.2, O fails in S6, but not by R-omission. Since at most t base objects

fail in $6, and they fail by R-arbitrary, the translation 2" is incorrect, a contradiction. This '

completes the proof of Theorem 5.5. []

5.1.4 Tolerating R-arbitrary failures

Since N-consensus has a t-tolerant translation from R-arbitrary to R-omission (of resource

complexity 3t + 1), and has a t-tolerant self-implementation for R-omission failures (of

resource complexity t + 1), it follows that N-consensus has a t-tolerant self-implementation

for R-arbitrary failures. However the resulting self-implementation is expensive, requiring

(3t + 1)(t + 1) base objects. In this section, we present a t-tolerant self-implementation for

R-arbitrary failures whose resource complexity is only O(t log t). 9 This self-implementation

uses the divide-and-conquer strategy. In Figure 4, we present the base step: obtaining a

1-tolerant self-implementation of resource complexity 6. In Figure 6, we show the recursive

step of obtaining a t-tolerant self-implementation from a t/2-tolerant self-implementation.

Consider the 1-tolerant self-implementation of N-consensus given in Figure 4:

Claim 5.11 Let i be either 1 or 4. If at most one object among Oi, 0i+1, and 0i+2

fails, then Majority(p, Oi, O/+1,0/+2, v) returns _ only if there is a concurrent or preceding

execution of Maj ority(q, Oi, O/+1, Oi+2, Y).

Proof Clear from the algorithm. []

Claim 5.12 Let i be either i or 4. If no object among Oi, 0i+1, and 0i+2 fails, then, for all

p and q, Majority(p, Oi, 0i+1, 0i+2, vp) returns the same value as Maj ority(q, Oi, 0i+1,0i-2, Vq).

Proof Clear from the algorithm. []

Theorem 5.6 Figure 4 gives a 1-tolerant self-implementation ofN-consensus for R-arbitrary
failures.

Proof Consider an execution E in which at most one of O1, O2,..., O6 fails by R-arbitrary

and the remaining are correct. Claim 5.11 implies that O satisfies validity in E. Clearly,

either all of O1, 02, and O3 are correct in E, or all of O4, O5, and 06 are correct in E. In

_This implementation, and all other implementations for R-axbitraxy failures in this paper, axe gracefully
degrading. Gracefttl degradation for R-axbitraxy failles is, however, almost trivial to achieve: it only
requires that, if all base objects axe wait-free, then the derived object is also wait-free. For brevity, we omit
references to graceful degradation in this section.

21

Oi : N-consensus objects (1 < i < 6)

Procedure Maj ority(p, O1, 02, O3, v)

countv[O..1], w: integer local to p

begin

co tp[0..l] := (o,o)
fori:= 1 to3do

w := f-propose(p, v,Oi)

co tp[] := co tp[]+l
if countp[O] > countp[l] then

return(O)

else return(l)

end

Procedure Propose(p, v, O)

begin

v :-- Majority(p, O1, 02, 03, v)

v := Majority(p, 04, 05,06, v)

return(v)
end

Figure 4: 1-tolerant self-implementation of N-consensus for R-arbitrary failures

the latter case, Claim 5.12 implies that O satisfies agreement in E. In the former case,

Claims 5.11 and 5.12 together imply that O satisfies agreement in E. It is obvious that O

satisfies integrity, and is wait-free in E. Thus, by Proposition 5.1, O is correct in E. []

Given this 1-tolerant self-implementation, by Booster lemma (Corollary 4.2) we obtain

a t-tolerant self-implementation of N-consensus for R-arbitrary failures. However, the

resulting resource complexity is O(t l°g2s), which is even higher than the complexity of the

implementation through translation mentioned above.

A more efficient recursive algorithm is presented in Figure 6. This algorithm implements

a t-tolerant N-consensus object O from O1, a [!2!I-tolerant N-consensus object, 02, a

[_AJ-tolerant N-consensus object, and the following (0-tolerant) N-consensus objects:

A0[1...3t + 1],AI[1... 3t + 1] and B[1...4t + 1]. Figure 5 illustrates the order in which
the base objects of O are accessed by a process proposing 0 on O (the access pattern for a

process proposing 1 on O is symmetrical).

Consider an execution E in which at most t base objects fail by R-arbitrary. Since O1

is [!_-tolerant and 02 is [_AJ-tolerant, either O1 or 02 is correct in E. The algorithm

in Figure 6 is based on this key observation. We now sketch the intuition behind Figure 6.

22

Ao

J

m

--N

A1

Figure 5: Execution trace of a process proposing 0 on O

23

A process p executing Propose(p, vn, O) first executes f-propose(p, vp, O1); if O1 seems

correct to p, p adopts the value returned by f-propose(p, vp, O1) for Propose(p, vp, O). If

p detects that O1 failed, p uses 02 to determine the response for Propose(p, vp, O).

Process p uses objects A0[1...3t + 1],Al[1...3t + 1] and B[1...4t + 1] to determine

whether O1 fails in E. O1 can fail in one of the following ways: (i) by returning a value

outside {0, 1}, (ii) by returning a value v E {0, 1} that was not proposed by any process,

and (iii) by returning 0 to some processes and 1 to other processes. The first case is

overcome by using f-propose as a "filter". The second and third cases are detected by

using A_[1... 3t + 1] and B[1... 4t + 1] respectively.

Note that the failure detection provided by A0[1... 3t+1], A1 [1... 3t+l] and B[1... 4t+

1] is not perfect. O1 may seem correct to some processes, and these processes base their

decision on O1. Others processes may detect that O1 failed and base their decision on 02.

The implementation in Figure 6 uses B to guarantee that both sets of processes decide on

the same value. We describe the implementation in Figure 6 by sketching how it overcomes

the different types of failures that O1 may exhibit:

• O1 returns a value that is not in {0, 1}. As before, procedure f-propose "filters" the

response to eliminate this problem.

• O1 returns a value that was not proposed by any process. A0[1...3t + 1] and

All1... 3t + 1] are used to detect that O1 failed, as follows.

Process p executes f-propose(p, vp, Avp[i]), for 1 < i < 3t + 1, before executing

anslp := f-propose(p, vp, 01). It can be shown that if O1 is correct in E, then all

correct objects in Aanslp[1... 3t+ 1] are "set" to anslp. Since a maximum oft objects

in Aa_81p[1. • • 3t + 1] may fail in E, p expects at least 2t + 1 objects to return anslp

when p accesses Aanslp[1... 3t + 1]. If p gets fewer than 2t + 1 copies of anslp, p

knows that O1 failed in E. Thusp uses 02 to reach the decision value.

• O1 may return 0 to some processes and I to others processes. B[1 ... 4t + 1] are used

to detect that O1 failed, as follows.

Immediately after executing anslp := f-propose(p, vp, O1), p executes f-propose (p, anslp, B[i])

for i < i < 4t+1. IfO1 is correct in E, no process q will execute f-propose(q, anslp, B[i])

for I < i < 4t + 1. Thus, all correct objects in B[1 ... 4t + 1] will be "set" to anslp.

Since a maximum of t objects in B[1... 4t + 1] may fail in E, p expects at least 3t + 1

objects to return anslp when p accesses B[1... 4t + 1]. If 19 gets fewer than 3t + 1

copies of anslr, , p knows that O1 failed in E. Thus, p uses 02 to reach the decision

ValUe.

Ifp detects that O1 failed in E, p uses 02 to reach a decision. Recall that it is possible

that some other process q did not detect Ol's failure, hence Propose(q, vq, O) returned

anslq. In this case, q gets at least 3t + 1 copies of anslq from B[1... 4t + 1]. To ensure

that p agrees with q in this case, p proposes to 02 the value @, which is the majority value

t is valid: p shouldthat it got from B[1 ... 4t + 1]. Note that care is taken to ensure that Vp

t when p accessed Avail... 3t + 1]. We now prove:have received at least t + 1 copies of vp

24

A0[1...3t + 1], All1... 3t + 1], B[1... 4t + 1] : (0-tolerant) N-consensus objects

O1 : [L_]-tolerant N-consensus object

02 : [L_AJ-tolerant N-consensus object

Procedure Propose(p, vp, O)

countv[O..1], WitnessCountv[O..1], belief v, anSlv, ans2p, vv, i, w : integer local to p
begin

:= (o,o)

Phase 1: for i := 1 to 3t + 1 do

:= _-proposo(v, vp, A_,[i])

if w = vv then countp[vv] := countv[Vp]+l

Phase 2: anslv := f-propose(p, vv, 01)

Phase 3: for i := 1 to 4t + 1 do

w := _-propose(p, anslp, B[i])

WitnessCount v [w] := WitnessCount v[w] + 1

9

10

11

Phase 4: for i := 1 to 3t + 1 do

:= _-provos,(p, vp, A_[i])

ifw = _ then eountv[_] := eountp[V_p]+l

12

13

14

15

16

17

18

19

end

Phase 5: Choose beliefp such that WitnessCountv[beliefp] > WitnessCountv[beliefp]

if WitnessCountv[beliefp] > 3t + 1 and countv[beliefp] _> 2t + 1 then
return(belie f p)

if WitnessCountv[beliefp] >_ 2t + 1 and countv[beliefp] > t + 1 then

v_ := beliefp
!

else vv := vv

ans2p := propose(p, v_, 02)

return(ans2v)

Figure 6: Efficientt-tolerantself-implementationofN-consensus for R-arbitraryfailures

25

Theorem 5.7 Figure 6 gives a t-tolerant self-implementation of N-consensus for R-arbitrary

failures of resource complezity O(tlogt).

Proof Consider an execution E in which at most t base objects fail by R-arbitrary, and

the remaining are correct. We show below, through a series of claims, that O is correct in

E; or equivalently (by Proposition 5.1), that O satisfies validity, agreement, and integrity,

and is wait-free in E.

Proposition 5.1 is used very often in this proof. For brevity, we omit references to it.

Claim 5.13 If 01 fails in E, then 02 is correct in E.

Proof Suppose both O1 and 02 fail in E. Since O1 is derived from a [_-!]-tolerant

implementation, at least [_.!] + 1 base objects of O1 must fail in E. Similarly, at least

[t__!] + 1 base objects of 02 must fail in E. Thus a total of [_!] + [_!] + 2 > t base

objects of O fail in E, a contradiction to the definition of E. []

Claim 5.14 If 01 is correct in E, 0 satisfies validity and agreement in E.

Proof Suppose O1 is correct. Thus, O1 satisfies validity and agreement. By the agreement

property of O1, anslp = anslq for all p, q. (Let v = anslp.) Thus every process proposes

the same value v to every B[i] in Phase 3. Since at most t objects in B[1... 4t + 1] fail,

beliefp = v and WitnessCountp[beliefp]>_ 3t + 1 (for every p).

By the validity property of O1, some process q will have invoked propose(q,v, O1)

before any process gets the response v from O1. This implies that q will have finished Phase

1 before any process begins Phase 3. Since at least 2t + 1 objects in Av[1... 3t + 1] are

correct, it follows that for all p, countp[v]> 2t + 1 by the end of Phase 4 ofp. Thus we have

WitnessCountp[beliefp] > 3t + 1 and countp[beliefp] > 2t + 1 (for every p). Hence every p

decides v (the proposal of q) by line 14. [_

Claim 5.15 If 01 fails in E, (9 satisfies validity and agreement in E.

Proof Suppose O1 fails. Then by Claim 5.13, 02 is correct, and thus, satisfies validity and

agreement. We need to consider two cases.

CASE i Suppose some process p returns by line 14. This implies that WitnessCountp [beliefp]

>_ 3t + 1 and countp[beliefp] >_ 2t + 1. Since at most t base objects fail, it follows that,

for every q, WitnessCountq[beliefp] > 2t + 1 and countq[beliefp] > t + 1. By line 12, this

implies that beliefq = beliefp. Let val = beliefp. Since WitnessCountq[beliefq] > 2t + 1

and countq[beliefq] > t + 1, either q returns beliefq = val by line 14 and we have agreement

' equal to val. Thus every q,' to beliefq by line 16, making vqbetween p and q, or q sets vq
' = val on 02. By the validity property of O2,that does not return by line 14, proposes vq

ans2q = val, and q returns val by line 19. Again we have agreement between p and q.

26

To see that O satisfies validity, note that countp[beliefp] > 2t + 1 implies that some

process proposed beliefp = vat on at least t + 1 objects in Abetiefp[1... 3t + 1].

CASE 2 Suppose no process returns by line 14. Then every q returns ans2q by line 19.

By the agreement property of O2, for all p, q, we have ans2p = ans2q. (Let val = ans2p).
Thds, O satisfies agreement.

By the validity property of 02, some process p must have proposed val to 02. That

I equals either vp or beliefp. If I then clearly Ois vpr = val. In the algorithm, vp vp = vp,

satisfies validity. If v_ = beliefp # vp, then p must have executed line 16. It follows that

countp[beliefp]>>_ t + 1. Since at most t objects in Abatis/p[1... 3t + 1] fail, some process q

proposed Vq = beliefp on some object in Abetie/p[1... 3t + 1]. Thus, process q proposed Vq
on O. Thus, O satisfies validity. []

Claim 5.16 The resource complezity of the implementation in Figure 6 is O(tlogt).

Proof Denoting the resource complexity of the t-tolerant self-implementationofN-consensus

for R-arbitrary failures by f(t), we have the fonowing recurrence: f(t) = 2f(t/2) + 2(3t +
1) + (4t + 1) and f(1) = 6. []

It is obvious that O satisfies integrity and is wait-free in E. By Claims 5.14 and 5.15,

O satisfies validity and agreement in E. Thus, by Proposition 5.1, O is correct in E. This

completes the proof of Theorem 5.7. []

5.2 Fault-tolerant implementation of register

The register type supports two operations, read and write v. The sequential specification

is simple: read returns the value most recently written.

In [Lam86], Lamport defined three types of registers: safe, regular, and atomic. Atomic

register corresponds to register in our terminology. A safe register is not linearizable, but

it satisfies the following: a read operation that does not overlap with a write, returns the

latest value written into the register. A read that overlaps with a write may return an
arbitrary value.

In the following, we first show how to build a fault-tolerant safe register from safe regis-

ters, some of which may experience R-arbitrary failures. We then resort to the register con-

struction results in the literature to show that register has a t-tolerant self-implementation
for R-arbitrary failures.

Lemma 5.1 A t-tolerant 1-reader, 1.writer, n-valued (resp. unbounded) safe register can

be implemented from 2t + 1 1-reader, 1-writer, n-valued (resp. unbounded) safe registers, at

most t of which may ezperienee R-arbitrary failures.

Proof (sketch) The implementation is as follows. To read the derived safe register, the

reader reads all 2t + 1 base registers, and returns the majority response. If there is no

27

majority, it returns an arbitrary value. To write a value v into the derived register, the

writer writes v to all 2t + 1 base registers. It is easy to verify that the above scheme

implements a safe register that is correct even if at most t base registers experience l_-

arbitrary failures. O

Since one can implement a multi-reader, multi-writer n-valued (resp. unbounded) atomic

register using 1-reader, 1-writer, boolean (resp. unbounded) safe registers, we have:

Theorem 5.8 boolean register and unbounded register have t-tolerantself-implementations

for R-arbitrary failures.

5.3 Universality results

We now describe how to implement fault-tolerant objects of a generic type. Let N-consensus

with reset be an N-process object type informally defined as follows: In addition to pro-

pose 0 and propose 1 operations, N-consensus with reset supports a reset operation.

The reset operation re-initializes the object so that it may be used for a fresh round of

consensus (see Appendix D for a formal specification of this type).

Herlihy showed that every finite object type 1° has an implementation from (N-consensus

with reset, unbounded register) 11 [HerPl]. The use of unbounded registers can be re-

placed by boolean registers [Plo89, JT92]. Using this result, together with Theorems 5.7

and 5.8, we obtain the following corollary.

Corollary 5.1 Let _ be any responsive failure model, and T be any finite object type.

• T has a t-tolerant implementation from (N-consensus with reset, boolean register)

for .I_ .

• IfN-consensus with reset andboolean register have gracefully depradin 9 imple-

mentations from T for A/l, then T has a t-tolerant self-implementation for s_t.

Herlihy's construction can be easily modified to yield a universal implementation from

(N-consensus with reset, unbounded register) even for infinite object types. Thus,

Corollary 5.1 holds even for an infinite object type T, provided that boolean register is

replaced by unbounded register in the statement of the corollary.

The types fetchkadd, queue, stack, testkset implement 2-consensus, and comparekswap,

move, swap implement N-consensus [HerPl].

It is easy to show that comparekswap, move, swap, testkset implement boolean

register, and fetch_add, queue, stack implement unbounded register. Furthermore,

all these implementations are gracefully degrading for R-arbitrary failures. Thus,

1°Notice that, by out definition of object type, every object type has a "sequential implementation".
11For this implementation, it suffices if the reset operation on an N-consensus object works in the absence

of concurrent operations on that object.

28

Corollary 5.2 The following object types have t-tolerant self-implementations for R-arbitrary

failures: (2-process) fetch&add, queue, stack, test&set, and (N-process) compare_swap,
move, swap.

6 Tolerating non-responsive failures

So far we have considered base objects that remain responsive (i.e., wait-free) even if they

fail. Thus, a process can access a base object and afford to wait for a response before

proceeding to access the next one. In other words, base objects can be accessed sequentially.

With non-responsive failures, waiting on a base object that fails could block the process

forever. Hence, to tolerate non-responsive failures, we allow a process to access base objects

"in parallel" 12, so that it can complete its operation on the derived object even if some of

the base objects fail and never respond.

As we will see, this ability to access base objects in parallel allows us to build t-tolerant

implementations of register, even for arbitrary failures. In contrast, we show that N-consensus

does not have a (deterministic) implementation that tolerates the crash of a single base ob-

ject even if we do not restrict the number and the type of the base objects that can be

used in the implementation. However, randomization circumvents this impossibility result.

Every object type has a t-tolerant randomized implementation from register, even for
arbitrary failures.

The impossibility results of this section are proved by reducing the consensus problem

[FLP85] to the problem in question. The consensus problem for a system of N processes is

defined as follows. Each process Pi has an initial binary input vi. The consensus problem

requires each correct process to reach the same (irrevocable) decision value d such that
d _ {Vl, v2,..., vN}.

Theorem 6.1 There is no 1-tolerant implementation of 2-consensus for crash failures.

Proof Suppose, for contradiction, there is a finite list £ = {Tt,T2,...,_} of object

types such that there is a 1-tolerant implementation 27 of 2-consensus from £ for crash

failures. We will use this implementation to solve the consensus problem among a set of

l + 2 processes, one of which may crash, in a system in which processes communicate o_y
through registers.

Consider the concurrent system S consisting of l + 2 processes named {Pl,p2} t_J{qj I1 <_
j < 1}, and 41 + 1 registers named {invocation(i,j), response(j,i) [1 <_ i < 2,1 < j <

l} U { decision}. We claim that the consensus problem is solvable in S even if one process

crashes. The following is the protocol. Let vi E {0, 1} be the initial input of Pi. The basic
idea consists of two steps:

12Howevez, we do not allow a process to invoke an opezation on a base object if its previous invocation on
that object is still pending.

29

1. Use a set {or, 02,..., or} of base objects of type T1, T2,..., Tl, and the implementation

2", to construct a 2-consensus object O = 2"(ol,...,ot) that tolerates the crash of

one of its base objects.

2. In system S, process qj (1 < j < I) simulates the base object oj, and process pi

(i = 1, 2) simulates the execution of Propose(pi, vi, O) on the derived object O.

The details are given below.

Initialize all 41 + 1 registers to .l_. Process pi simulates Propose(pi,vi, O) as follows.

If Propose(pi, vi, O) requires pi to invoke some operation op on oj, pi appends op to the

contents of invocation(i, j). If Propose (Pl, vi, O) requires Pi to check if a response to some

outstanding invocation on oj has arrived, pi checks if a response has been appended by qj

(which simulates oi) to response(j, i). If Propose (Pi, vi, O) returns a value v, Pi first writes

v in decision register, and then decides v. In addition to (and concurrently with) the above,

Pl periodically checks if the register decision contains a non-_l_ value. If so, it decides that

value.

Process q1 simulates the base object 0i as follows. Periodically q1 checks the registers

invocation(I, j) and invocation(2, j), in a round-robin fashion. If q1 notices that some op-

eration op has been appended to invocation(i,j), q1 simulates the application of op to oi

and appends the corresponding response to response(j, i). In addition to (and concurrently

with) the above, q1 periodically checks if the register decision contains a non-_l_ value. If so,
it decides that value.

The above simulation protocol solves the consensus problem among the l + 2 processes

in the concurrent system S, even if one of them crashes. To see this, consider any execution

E of the concurrent system S in which at most one process crashes. Let E r be the corre-

sponding "simulated" execution of the derived object {9. Note that the crash of one process

in S corresponds to the crash of at most one (simulated) base object of the (simulated) de-

rived object O in E t. Since 2:, the 2-consensus implementation from which O is derived, is

1-tolerant for crash, {9 is correct in E r (despite the crash of one of its base objects). Thus,

by Proposition 5.1, {9 satisfies integrity, validity, and agreement, and is walt-free in E t.

Since (9 is wait-free (in E_), if p, does not crash, Propose (pl, vi, O) eventually returns some

value v (in El). Since {9 satisfies integrity, v is a binary value. Since O satisfies validity, v

is either Vl or v2. Since {9 satisfies agreement, Propose(pt, Vl, O) and Propose(p2, v2, {9)

never return different values. Thus, from the protocol, Pt and p2 do not "_'rite different

values in register decision. Since at most one process crashes, at least one of pt and p2 will

eventually write a binary value v in register decision. Since all correct processes periodically

check the decision register, they eventually decide v.

We showed that we can use 2" to solve the consensus problem in system S, and this

contradicts the impossibility result of Louis and Abu-Amara [LAA87]. []

We can strengthen the above result as follows. Suppose that at most one base object

may fail, and it can only do so by being "unfair" (i.e., by not responding) to at most

one process. Furthermore, suppose that the identity of this process is a priori "common

knowledge" among all the processes. Even with this extremely weak model of object failure,

3O

called1-unfairness to a known process, we can prove the following:

Theorem 6.2 There is no I.tolerant implementation of 2-connonnun for 1-unfairness to

a known process.

Proof (sketch) Suppose, for contradiction, there is a finite list £ = {T1,T2,... ,Tt} of

object types such that there is a 1-tolerant implementation 27 of 2-consensus from £ for

1-unfairness to, say, process pl. Consider the concurrent system S, as defined in the proof

of Theorem 6.1. Suppose processes in S run the same simulation protocol as in that proof.
There are two cases:

,

.

No process qk crashes. In this case, it is easy to see that processes in S solve the

consensus problem (exactly as before).

Some process qk crashes. In this case, processes in S may fail to solve the consensus

problem for the following reason. The crash of qk corresponds to the crash of the

simulated base object ok. This object is now potentially unfair to both pl and p2. But

27 tolerates unfairness to only Pl. So the derived 2-consensus object O of 27 is not

necessarily correct.

To circumvent the problem that arises in Case 2, we modify the simulation protocol

as follows: If Propoao(p2, v2,O) requires p2 to invoke some operation op on some oj, p2

appends op to the contents of invocation(2,j), as before, but now it also waits until a

corresponding response is appended to response(j, 2) by process qj. The rest of the simu-

lation protocol remains exactly as before. We now reconsider the above two cases with the

modified simulation protocol:

,

2,

No process qk crashes. As before, it is easy to see that processes in S solve the

consensus problem.

Some process qk crashes. If p2 attempts to access ok after the crash of qk, it will

simply wait for the response forever t3. Therefore, at worst, to process Pl, the crash

of qk looks like oh is unfair to Pl, and p2 is extremely slow. Since 27 tolerates the

unfairness of one base object to pl, O remains correct. Since Pl does not crash (we

assumed that only one process in S crashes, and this is qk), Propose(pt, Vl, (_) returns

a value that Pt writes into decision. The rest of the proof is as in Theorem 6.1.

Again, we have a contradiction to the impossibility result in [LAA87].

[]

From the above two theorems we have:

13Of course, it also contlaues to read the decision register periodically, and decides if a non-3_ value is

found there.

31

Corollary 6.1 If type T implements 2-consensus, then there is no 1-tolerant implemen-

tation of T for crash or for 1-unfairness to a known process.

From [Her91] and this corollary, we conclude that compaxe&swap, fetch&add, move, queue,

stack, sticky-bit, swap, test_set, and several other common types do not have a 1-

tolerant implementation for crash or 1-unfairness to a known process. In contrast to the

above impossibility results we show

Theorem 6.3 boolean register and unbounded register have t-tolerantself-implementations

for arbitrary failures.

This follows immediately from the following lemma and the fact that one can implement

a multi-reader, multi-writer n-valued (resp. unbounded) atomic register using 1-reader,

1-writer, boolean (resp. unbounded) safe registers.

Lemma 6.1 A t-tolerant 1-reader, I-writer, n-valued (resp. unbounded) safe register can

be implemented from 5t + 1 1-reader, 1-writer, n-valued (resp. unbounded) safe registers, at

most t of which may ezperience arbitrary failures.

Proof (sketch) Informally, the reader invokes a 'read' on each base register (the reader

delays this read if its previous read on the base register is still pending). When it gets a

response from 4t + 1 distinct registers, it returns the majority value. If there is no majority,

it returns an arbitrary value. To write a value v, the writer invokes a 'write v' on each

base register (again, this write is delayed if the previous write on the base register is still

pending). The writing completes when 4t + 1 base registers return an "ack". It is easy to

verify that the above scheme implements a safe register that is correct even if at most t

base registers experience arbitrary failures. []

Randomized implementations of N-consensus from register are well known (for ex-

ample, see [Asp90]). Together with Theorem 6.3, this implies that randomized t-tolerant

implementations of N-consensus from register exist for arbitrary failures. Combining

this with Theorem 6.3 and the universality results of [Her91, Plo89], we have

Theorem 6.4 Every finite object type has a randomized t-tolerant implementation from

boolean register for arbitrary failures, and every infinite object type has a randomized

t-tolerant implementation from unbounded register for arbitrary failures.

Thus, ifa finite(resp. infinite)object type T implements boolean register (resp.

unbounded register), then T has a randomized t-tolerant self-implementation for ar-

bitrary failures. This implies that compare&swap, fetch&add, queue, move, stack,

swap, test/tset have t-tolerantrandomized self-implementations, even for arbitrary fail-

ures!

Our next result concerns the nature of arbitrary failures. It states that the problem

of tolerating arbitrary failurescan be reduced to two strictlysimpler problems: tolerating

R-arbitrary failuresand tolerating omission failures.

32

Lemma 6.2 (Decomposability of arbitrary failures) A type T has a t-tolerant self-implementation

for arbitrary -failures if and only if T has a t.tolerant self-implementation Za -for R-arbitrary

-failures, and Zo for omission failures.

Proof (sketch) The "only if" direction is obvious. To prove the "if" direction, define

Z(ol, o2,..., Ohm) = Zo(Ia(Ol,..., on),... ,Za(o(,__l)m+l,..., O_m)). It can be verified that
2" is a t-tolerant self-implementation of T for arbitrary failures. O

7 Graceful degradation for benign failure models

We have seen that every object type has a t-tolerant implementation for R-crash and K-

omission failures. But what if we also require the implementation to be gracefully degrading?
The results are mostly negative for R-crash, but not so for R-omission.

7.1 R-crash

Consider a system that supports a given set S of "hardware" objects. Assume that these

objects may fail, but if they do, they are guaranteed to only fail by K-crash. Suppose we

wish to implement an object O of type T using only objects in S, and that we require O

to function correctly only in the absence of failures. However, when objects in S fail by

R-crash, we would like O to fail only by R-crash. This last requirement is desirable for two
reasons:

• The benign failure semantics of R-crash are desirable.

• Such an object O appears like any other hardware object of the system. In other

words, with this "software implementation" of O, the system would be no different,

in functionality and failure semantics, from one that directly supports all the objects
in S U {0} in hardware.

In our terminology, we are seeking a gracefully degrading implementation of T for

R-crash from the types (of the objects) in S. Unfortunately, as we show below, many

object types do not have such implementations, even from very powerful object types.
This negative result implies that, in many cases, the simple and desirable R-crash failure
semantics cannot be achieved.

An object type T is order-sensitive if it is deterministic and the following holds: There

exists a state S in G(T), operations olo, op' (not necessarily distinct) in OP(T), and values

u, v, u', v' such that each of (o/9, u),(op', u') and (op', v'),(op, v) is consistent from the state

S ofT, and u # v and u' # v'. Intuitively, when an object O is in the state S, and

two processes p and q invoke operations op and op' concurrently on (9, they can, based

on the return values, determine the order in which their operations are linearized, queue

is an example of an order-sensitive object type. To see this, let S be the state in which

33

there are two elements 5 and 10 in the queue (5 at the head), and let both op and op'

be deq. Now we have u = 5, u t = 10, v t = 5, and v = 10. Thus u _ v and u' _ v',

as required, compaxe&swap, N-consensus, stack, test&set are some other examples of

order-sensitive object types. An object type is non-order-sensitive if it is deterministic and

not order#sensitive. Exazaples of non-order-sensitive types include register, sticky-bit,

move, and swap.

Theorem 7.1 There is no gracefully degrading implementation of any order-sensitive ob-

ject type/or R-crash from any list o/non-order.sensitive object types.

Proof Suppose there are T, E, and 27 such that T is an order-sensitive type, Z: =

{T1, T2,..., Tn} is a llst of non-order-sensitive types, and Z is a gracefully degrading imple-
mentation of T from Z: for R-crash. We arrive at a contradiction after a series of claims

involving bivalency arguments [FLP85] and indistinguishable scenarios.

Let O = 27(O1,O2, ...,On), and op, op',S,u,v,u',v' be as given in the definition of

an order-sensitive type. Consider the concurrent system consisting of two processes p and

q, and the shared object O (implemented from O1,O2,... ,Or,). Define the configuration

(at an instant t) as the tuple ($p, Sq, So) where Sp, Sq, and So are the states of process p,

process q, and object O respectively (at the instant t). Let Co denote the configuration in

which O is in state S, and p, q are about to execute Apply(p, op, O) and Apply(q, op', O)

respectively.

Claim 7.1 Suppose all base objects are correct. For any interleaving of the steps in the

complete ezecutions of Apply(p, op, O) and Apply(q, op', 0), either Apply(p, op, O) returns

u and Apply(q, op', O) returns u', or Apply(p, op, (9) returns v and Apply(q, op', (9) returns
V t ,

Proof In the linearization of the execution history of object O, either Apply(p, op, O) imme-

diately precedes Apply(q, oio', O), or Apply(q, op', O) immediately precedes Apply(p, op, 0).

This, together with the definitions of u, u', v, v t, and the fact that T is a deterministic type,

trivially imply the claim. []

Let C denote a configuration reached from Co after some interleaving of (partial) exe-

cutions of Apply(p, op, O) and Apply(q, o/9', O). We say C is X-valent if, in the absence of

base object failures, Apply(p, op, O) returns X, no matter how the steps of Apply(p, op, O)

and Apply(q, op', O) interleave when execution resumes from C. By Claim 7.1, if C is X-

valent, either X = u or X = v. C is monovalent if C is either u-vaient or v-valent. C is
bivalent if it is neither u-valent nor v-valent.

Claim 7.2 Co is bivalent.

Proof Starting from Co, if p completes all the steps of Apply(p, op, O) before q starts

Apply(q, op t, O), then Apply(p, op, O) returns u. Thus Co is not v-valent.

34

Similarly,starting from Co, if q completes all the steps of Apply(q, op I, O) before p starts

Apply(p, op, O), then Apply(q, op r, O) returns v'. Thus, by Claim 7.1, when Apply(p, op, (9)

completes, it returns v. Thus Co is not u-valent.

Since Co is neither u-valent nor v-valent, it is bivalent. []

We say C' is a reachable configuration from C, if, starting from the configuration C,

there is some interleaving of the steps of p and q such that C t is the configuration at the

end of that interleaving. Given a configuration C, let C(p) denote the configuration that

results when p takes a single step of Apply(p, op, (9) from C. C(q) is similarly defined.

Claim 7.3 There is a bivalent configuration Co, it reachable from Co such that Co.it (p) and
Cerit(q) are both monovalent.

Proof Interleave the steps of Apply(p, op, O) and Apply(q, op', O) as shown in Figure 7.

Since O is wait-free, the repeat...until loop in the figure must terminate after a finite number

of iterations. Let Cc_it be the value of C just when the loop terminates. It is easy to verify

that Co, it satisfies the properties required by the claim. O

C:=C0

repeat

if C(p) is bivalent then

c := c(p)
if C(q) is bivalent then

C := C(q)
until (C(p) is monovalent)/\(C(q) is monovalent)

Figure 7: Reaching a critical bivalent configuration

Since Cc,.it is bivalent, Ce_it(p) and Ce_it(q) cannot both be X-valent, for the same X.

Thus, either Cc,_it(p) is u-valent and C_it(q) is v-valent, or Ce,it(p) is v-valent and Cc,.it(q)
is u-valent. Without loss of generality, we will assume the former.

Claim '}'.4 The enabled steps of p and q in Co, it access the same base object.

Proof Suppose not. Then (Cc,it(p))(q) and (C_it(q))(p) are identical configurations, and

yet, the former is u-valent and the latter v-vMent. This is impossible since u _ v. []

Assume that Ok is the base object mentioned in the above claim, and Apply(p, oper, Ok),

Appay(q, oper _, Ok) are the enabled steps ofp and q respectively in Co,it. Since Ok is an ob-

ject of a non-order-sensitive type, either Apply(q, oper p, Ok) returns the same value whether

applied in Cerit or C_.it(p), or Apply(p, oper, Ok) returns the same value whether applied in
Ccrit or Ccrit(q). In the following, we will deal with the former case. The latter case can be

handled similarly, and is omitted.

35

Claim 7.5 Consider

Scenario S1 (Starts from the configuration Ccrit)

1. Process q takes the step Apply(q, oper', 0_).

2. Process p completes the execution of Apply(p, op, 0).

3. All base objects 01, 02,..., On fail by R-crash.

4. Process q resumes and completes the execution of Apply(q, op', 0).

Then Apply(p, op, O) returns v and Apply(q, op', O) returns v'.

Proof Since q takes the step from Ce,.it, and Cerit(q) is v-valent, and no base object failures

occur before p completes the execution of Apply(p, op, (P) in Item 2, Apply(p, op, (P) returns

v in Item 2 of the scenario.

Suppose Apply(q, op I, O) returns J_. Since 27 is gracefully degrading, O must either

be correct or fail by R-crash. Given that Apply(p, o17,(9) returns a non-& response, this

requires that Apply(p, o17,O) precedes Apply(q, op', O) in the linearization order. Doing so,

however, implies that (op, v) is a sequential execution from S consistent with T. This is

false since (op, u) is the only sequence consistent from the state S of T, and v ¢ u. Thus

Apply(q, op _, O) cannot return _l_.

Suppose Apply(q, olo_, O) returns w where _1_¢ w ¢ v _. Since in the linearization, ei-

ther Apply(p, op, O) precedes Apply(q, op', 0), or Apply(q, op', O) precedes Apply(p, op, 0),

it follows that either (op, v),(op', w) or (op', w),(op, v) is a sequential execution from S con-

sistent with T. This is false since (op, u),(op', u') and (o/7', v'),(op, v) are the only sequences

consistent from the state S of T, and u ¢ v, w ¢ v I ¢ v.

We conclude that Apply(q, op I, (9) must return v I. []

Claim 7.6 Consider

Scenario S2 (Starts from the configuration Cerit)

1. Process p takes the step Apply(p, oper, Ok).

2. Process q takes the step Apply(q, oper', Ok).

3. Process p resumes and completes the execution of Apply(p, op, 0).

4. All base objects 01, 02,..., On fail by R-crash.

5. Process q resumes and completes the execution of Apply(q, op', 0).

Then Apply(p, op, O) returns u and Apply(q, op', O) returns v'.

36

Proof Since p takes the step from Ccrit, and Co,it(p) is u-valent, and no base object failures

occur before p completes the execution of Apply(p, op, O) in Item 3, Apply(p, op, O) returns

u in Item 3 of the scenario. Since S2_qS1, Apply(q, op', O) returns v' as in Sl. O

Neither (op, u),(op', v') nor (op r, v'),(op, u) is a sequence consistent from the state S of

T. Hence the execution in Claim 7.6 is not linearizable. Thus the failure of (9 in S2 is not

by R-crash. We conclude that :T is not a gracefully degrading implementation for R-crash,

a contradiction which concludes the proof of Theorem 7.1. []

Preserving the failures semantics of the underlying system is a desirable property of

an implementation. For R-crash, the above theorem shows that this property is often not

achievable: implementations necessarily amplify the R-crash failures of base objects. For

example, consider a system that supports registers and sticky-bits in "hardware". In such

a system, any object can be implemented [Plo89], including (for example) queues. Suppose

we are given the following guarantee: if any of the given registers or sticky bits fail, they fail

only by R-crash. Can we implement a queue that cannot fail more severely than R-crash?
The above theorem shows that this cannot be done.

Requiring a derived object to inherit the R-crash semantics of its base objects is even

more difficult if we add the requirement that the derived object be 1-tolerant: Even if we do

not restrict the types of primitives available in the underlying system, such implementations

do not exist for most objects of interest. This is shown by the theorem below.

Theorem 7.2 There is no 1-tolerant gracefully degrading implementation of any order-
sensitive object type for R-crash.

Proof Suppose there are T, £, and 2" such that T is an order-sensitive type, Z: =

{T1, T2,..., T,_ } is a list of types, and 2" is a 1-tolerant gracefully degrading implementation

of T from £ for R-crash. We arrive at a contradiction after a series of claims involving

indistinguishable scenarios. Let O = I(O1, 02,... On), and op, op _, S, u, v, u r, v t be as

given in the definition of order-sensitive types. Suppose O is in state S, and p, q are about

to execute apply(p, op, O) and Apply(q, op r, O) respectively.

Claim 7.7 Suppose all base objects are correct. For any interleaving of the steps in the

complete ezecutions of Apply(p, op, (9) and Apply(q, op', 0), either Apply(p, op, O) returns

u and Apply(q, op _, O) returns u _, or Apply(p, op, (9) returns v and Apply(q, op _, (9) returns
V t"

Proof Same as Claim 7.1. []

Claim 7.8 There ezists a (possibly empty) sequence c_ o/steps of p and a step s of p such
that the following Scenarios $1 and $2 are possible.

Seenazio S1 (scenario starts with O in state S)

1. Process p initiates and partially executes Apply(p, op, O) by completing the steps in o_.

37

2. Process q initiates and completes (all the steps of) Apply(q, op', 0), returning v'.

3. p completes the remaining steps of Apply(p, op, 0), returning v.

Scenario S2 (scenario starts with O in state S)

1. p initiates and (partially) executes Apply(p, op, O) by completing the steps in _. s.

2. q initiates and completes (all the steps of) Apply(q, op', 0), returning u'.

3. p completes the remaining steps of Apply(p, op, O), returning u.

Proof Clearly if process p executes no steps of Apply(p, op, O) before process q initiates and

completes Apply(q, op p, 0), then Apply(q, opt, O) must return v t. Further, if p initiates and

completes all the steps of Apply(p, o19, O) (let/3 be this sequence of steps) before q initiates

and completes Apply(q, op', 0), then Apply(q, op r, O) must return u t. Together with Claim

7.7 by which Apply(q, op t, (9) must return either u t or v I, the above implies that there exists

a sequence c_ of steps and a step s such that a.s is a prefix of/3 for which the claim holds.
[]

Hereafter we will assume Ok is the base object accessed by p in step s.

Claim 7.9 Consider

Scenario S3 (scenario starts with (9 in state S)

i. p initiates and (partially) executes Apply(p, op, O) by completing the steps in _.s.

2. q initiates and completes (all the steps of) Apply(q, op', O), returning u' (as in S2).

3. 01, 02,..., On fail by R-crash.

4. P completes the remaining steps of Apply(p, op, 0).

Then Apply(p, op, O) returns u.

Proof Suppose Apply(p, olo, (9) returns 2_. Since 27 is gracefully degrading, O must either

be correct or fail by R-crash. This requires, given that Apply(q, op', O) returns a non-2_

response, that Apply(q, op', O) precede Apply(p, op, O) in the linearization order. Doing so,

however, implies that (op', u I) is a sequential execution from S consistent with T. This is

false since u' ¢ v', T is deterministic, and (op', v I) is a sequential execution from S consistent

with T. Thus Apply(p, op, O) cannot return 2_.

Suppose Apply(p, op, O) returns w where _l_ _ w _ u. Since in the linearization, ei-

ther Apply(p, op, O) precedes Apply(q, op', (9) or Apply(q, op', O) precedes Apply(p, op, 0),

it follows that either (op, w),(op', u') or (op', u'),(op, w) is a sequential execution from S con-

sistent with T. This is false since (op, u),(op', u') and (op', v'),(op, v) are the only sequences

consistent from the state S of T, and w ¢ u, u' ¢ v'.

We conclude that Apply(p, o19,O) must return u. []

38

Claim 7.10 Consider

Scenario $4 (scenario starts with (9 in state S)

1. p initiates and (partially) ezecutes Apply(p, op, (9) by completing the steps in c_.s.

2. Oh fails by R-crash.

3. q initiates and completes (all the steps of) Apply(q, op p, 0).

_. 01,...,0k-1 and Ok+l,...,On also fail by R-crash.

5. p completes the remaining steps of Apply(p, op, 0).

Then Apply(p, op, O) returns u and Apply(q, op t, O) returns u'.

Proof Clearly S4_p33. Therefore, as in $3, Apply(p, op, O) returns u in S4. Since Z is 1-

tolerant, and since only Ok has failed by the completion of Apply(q, op', O), Apply(q, op', O)

must return a non-& response. From the definitions of u, u', v, v', it is easy to verify that

the only non-& response that satisfies linearizability is u'. []

Claim 7.11 Consider

Scenario S5 (scenario starts with 0 in state S)

1. p initiates and partially executes Apply(p, op, O) by completing the steps in c_.

2. Oh fails by R-crash.

3. q initiates and completes (all the steps of) Apply(q, op', 0).

_. 01,...,0k-1 and Ok+z,...,On also fail by R-crash.

5. p completes the remaining steps of Apply(p, op, 0).

Then Apply(p, op, (P) returns u.

Proof Clearly $5_qS4. Therefore Apply(q, op', O) returns u' as in S4. By similar arguments

as in Claim 7.9, it can be shown that Apply(p, op, (9) returns u. []

Claim 7.12 Consider

Scenario $6 (scenario starts with {P in state S)

1. p initiates and partially executes Apply(p,op, O) by completing the steps in (x.

_. q initiates and completes (all the steps of) Apply(q, op', O).

3. All base objects 01, 02, . . . , 0_ fail by R-crash.

39

4. P completes the remaining steps of Apply(p, op, 0).

Then Apply(p, op, O) returns u, and Apply(q, op', O) returns v'.

Proof Since S6 _p S5, Apply(p, op, O) returns u as in SS. Since S6 _q Sl, Apply(q, op', O)
returns v' as in S l. D

Neither (op, u),(op', v') nor (op _, v'),(op, u) is a sequence consistent from the state S of

T. Hence the execution in Claim 7.12 is not linearizable. Thus the failure of (P in $6 is not

by R-crash. We conclude that 27 is not a gracefully degrading implementation for R-crash,

a contradiction which concludes the proof of Theorem 7.2. []

The above discussion raises some questions on the "practicality" of the R-crash model:

Even if "hardware" objects fail by R-crash, "software" objects usually don't. The R-

omission model defined in this paper does not have this serious limitation. In fact, for

any t > O, every N-process object type has a t-tolerant gracefully degrading implementation

from any universal list of types. In other words, implementations preserving the R-omission

semantics of the underlying system always exist. This is a formal justification for adopting

the R-omission model of failure. These results are presented in the next section.

7.2 R-omission

The object type N-consensus is order-sensitive. By Theorem 7.2, N-consensus has no

t-tolerant gracefully degrading implementation for R-crash. In contrast, N-consensus has

such an implementation for R-omission (Theorem 5.2 in Section 5). Further, we can show

Theorem 7.3 register has a t.tolerant gracefully degrading self-implementation for R-

omission.

Theorems 5.2 and 7.3 can be combined with the universal constructions in [Hergl, JT92]

to obtain the following result for R-omission.

A list/: of object types is N-universalif every N-process object type has an implemen-

tation from Z:. An example of a N-universal list is (N-consensus with reset, register).

Theorem 7.4 Every N.process object type has a t-tolerant gracefully degrading implemen-

tation from any N-universal list of object types for R-omission.

8 Related work

In an independent work, Afek et al. consider the problem of coping with shared memory

subject to memory failures [AGMT92]. Informally, each failure is modeled as a faulty write.

The following failure models are considered:

4O

A. There is a bound rn on the total number of faulty writes.

B. There is a bound f on the total number of data objects that may be affected by memory

failures, and a bound k on the number of faulty writes on each faulty object. A

different model is obtained for k -- oo.

In our terminology, these models are responsive. The second one, with k -- _, corresponds

to our K-arbitrary failure model.

[AGMT92] focuses on fault-tolerant implementations of the following types of ob-

jects: safe, atomic, binary, and V-valued register from various types of registers; N-

process test&set from N-process test_set and bounded register; and N-consensus

from read-modify-write (P_W). [AGMT92] also gives a universal fault-tolerant imple-

mentation from unbounded P_W, based on Herlihy's universal implementation. The main

differences between [AGMT92] and this paper are as follows:

.

2.

°

.

o

.

[AGMT92] does not consider any non-responsive failure model.

Amongst the responsive failure models, benign ones, such as K-crash and R-omission,

are also not considered in [AGMT92].

This paper does not consider models that bound the number of times faulty objects

can fail (in [AGMT92] each "faulty write" is counted as a failure).

The two approaches to modeling failures are fundamentally different. There is no

direct way to model benign failures, such as K-crash and K-omission failures, with

"faulty writes". On the other hand, our approach--defining how each faulty object

deviates from its type--is not suited to handle Model A above.

This paper introduces the concept of graceful degradation, and presents several related

results, in particular, for R-crash and R-omission failure models. For R-arbitrary

failures, graceful degradation reduces to the "strong wait-freedom" concept considered

in [AGMT92].

The concept of fault-tolerant self-implementation, is a central theme of this paper.

Corollary 5.1 states sufficient conditions for their existence, and Corollary 5.2 lists

several types" that have such implementations. In the Open Problems section of

[AGMT92] it is stated:

"It would be particularly interesting to implement memory-fault tolerant

data objects directly from similar, faulty objects, such as test-and-set from

test-and-set, without using atomic registers, or read-modify-write from read-

modify-write, without using an unbounded universal construction."

It is interesting to note that both of these types do have fault-tolerant self-implementations.

For bounded RHW_this is a direct consequence of Corollary 5.1. For N-process t • st _s • t,

one can combine the fault-tolerant implementation of test_set from test_set and

41

bounded register [AGMT92], with the implementation ofbounded register from

test&set [Jay93].

7. The existenceof a fault-tolerantself-implementationof consensus, shown in this

paper,does not followfrom the resultsin [AGMT92].

8. The fault-tolerantimplementationofN-processtest&set from test&set and bounded

register shown in [AGMT92], does not follow from our results (when N > 2).

Acknowledgement

We thank Vassos Hadzilacos for many interesting discussions. His detailed comments on an

earlier version helped improve the presentation.

References

[AGMT92]

[Aspg0]

[CHP71]

Y. Afek, D. Greenberg, M. Merritt, and G. Taubenfeld. Computing with faulty

shared memory. In Proceedings of the 11th Annual Symposium on Principles of

Distributed Computing, pages 47-58, August 1992. A draft of a more complete

version of this paper dated Aug 7, 1992 was also privately sent to us.

J. Aspnes. Time and space efficient randomized consensus. In Proceedings of

the 9th A CM Symposium on Principles of Distributed Computing, 1990.

P.J. Courtois, F. Heymans, and D.L. Parnas. Concurrent control with readers

and writers. Communications of the A CM, 14(10):667-668, 1971.

[FLP85]

[Hergl]

[HW90]

[Jay93]

[JCT92a]

[JCT92b]

M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus

with one faulty process. JACM, 32(2):374-382, 1985.

M.P. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124-149, 1991.

M.P. Herlihyand J.M. Wing. Linearizability:A correctnessconditionforcon-

currentobjects.ACM TOPLAS, 12(3):463-492,1990.

P. Jayanti. Fault-Tolerant Wait-_ree Shared Objects. PhD thesis, CorneU Uni-

versity, 1993. Dept. of Computer Science, CorneU University, Ithaca, NY 14853

(In preparation).

P. Jayanti, T. D. Chandra, and S. Toueg. Fault-tolerant wait-free shared objects.

Technical Report TR 92-1281, Cornell University, Dept. of Computer Science,

Cornell University, Ithaca, NY 14853, April 1992.

P. Jayanti, T. D. Chandra, and S. Toueg. Fault-tolerant wait-free shared objects.

In Proceedings of the 33rd Annual Symposium on Foundations of Computer

Science, October 1992.

42

[JT92]

[LAA8?]

[Lain86]

[LT88]

[NT90]

[Plo89]

P. Jayanti and S. Toueg. Some results on the impossibility, universality, and

decidability of consensus. In Proceedings of the 6th Workshop on Distributed

Algorithms, Haifa, Israel, November 1992. (To appear in Lecture Notes in

Computer Science, Springer-Verlag).

M.C. Loui and Abu-Amara. Memory requirements for agreement among un-

reliable asynchronous processes. Advances in computing research, 4:163-183,
1987.

L. Lamport. On interprocess communication, parts i and ii. Distributed Com-

puting, 1:77-101, 1986.

N. Lynch and M. Tattle. An introduction to input/output automata. Technical

Report MIT/LCS/TM-373, MIT, MIT Laboratory for Computer Science, 1988.

G. Neiger and S. Toueg. Automatically increasing the fault-tolerance of dis-

tributed algorithms. Journal of Algorithms, 11(3):374-419, 1990.

S. Plotkin. Sticky bits and universality of consensus. In Proceedings o/the

8th ACM Symposium on Principles of Distributed Computing, pages 159-175,
August 1989.

43

A Formal model

Our formal model is based on I/O Automata [LT88]. We use the model to make our

definitions of failure models (Appendix B) and fault-tolerant implementations (Appendix

C) precise. The implementations in the paper are described in the more intuitive Pascal-like

style. In the following, we borrow several definitions from in [HW90, Her91]. There are

however some differences between our model and Herlihy's [Her91]. Notable among these

are: (i) our addition of an explicit "crash" state for a process, (ii) the definitions of wait-

freedom, and implementation, (iii) the added assumption of fairness in our model, and (iv)

the definition of clocked concurrent systems.

A.1 I/O Automata

An//0 Automaton A is a non-deterministic automaton with the following components:

1. States(A) is a finite/infinite set of states, including a distinguished set of starting

states.

2. In(A) is a set of input events.

3. Out(A) is a set of output events.

4. Int(A) is a set of internal events.

5. Step(A) is a transition relation given by a set of tuples (s,e, s'), where s and s' are

states, and e is an event. Such a triple is called a step, and it means that an automaton

in state s can undergo a transition to state s' and that transition is associated with

event e.

If (s, e, s') is a step, we say e is enabledin state s. I/O Automata (abbreviated hereafter

as automata) must additionally satisfy the requirement that input, output, and internal

events are disjoint, and every input event is enabled in every state.

An ezecution fragment of an automaton A is a finite sequence so, e 1, si, e2, s2,.. •, en, sn

or an infinite sequence so, el, Sl, e2, s2,.., of alternating states and events such that (s_, ei+l, sit i)

is a step of A. An ezecution is an execution fragment in which so is a starting state. A

history fragment of an automaton is the subsequence of events in an execution fragment of

the automaton. A history of an automaton is the subsequence of events in an execution. An

execution fragment E is]air if either E is finite, or E is infinite and every internal event or

an output event that is enabled in every state of a suffix of E occurs infinitely many times

in E. i4

A new automaton can be constructed by composing a set of compatible automata. A

set of automata are compatible if, no two of them share any internal or output events. That

a4Since this simple notion of fairness is adequate for our purpose, we do not need the general machinery

described in [LT88] for formulating fairaess.

44

is, for every A, B in the set, (Int(A) U Out(A))M(Int(B) U Out(B))= 0. A state of the

composed automaton S is a tuple of the components' states, and a starting state of S is

the tuple of the components' starting states. The set of output events of S, Out(S), is the

union of the sets of output events of the component automata. The set of internal events

of S, Int(S), is the union of the sets of internal events of the component automata. The

set of input events of S, In(S), is IN- Out(S), where IN is the union of the sets of input

events of the component automata. A triple (s, e, s t) is in Step(S) if and only if, for all

the component automata A, one of the following holds: (1) e is an event of A, and the

projection of the step onto A is in Step(A), or (2) ¢ is not an event of A, and the state of
A in s and s I is the same:

If H is a history of a composed automaton and Az, A2,. •., As are component automata.

then HI{A1, A2,..., As} is the subhistory of H consisting of all events e, where e is an event
of one ofA1,A2,...,AI¢.

A.2 Object type

An object type T is a tuple (N, OP, RES, G), where N is an integer greater than one, OP,
RES are sets of operations and responses respectively, and G is a directed finite or infinite

graph in which each edge has a label of the form (op, res) where o/9 E OP and res E RES.

Intuitively, if O is an object of type T, then O supports the operations in OP and may be

shared by N processes (we say T is an N-process type). G specifies the expected behavior
of O in the absence of concurrent operations on O.

The vertices of G are the states of T. One state of T is the initial state. A state s of

T is reachable if there is a path in G from the initial state to s. We assume that every state

of T is reachable. A sequence S =(opl, resz),(op2, res2), ...,(opt, rest) is consistent from a

state s of T if there is a path labeled S in G from the state s. S is consistent with respect
to T if it is consistent from the initial state of T.

An object type T is total if for every state s of T, and every operation op E OP, there

is a response res such that there is an edge labeled (o/9, res) from s in G. All object types

studied in this paper are assumed to be total. T is deterministic if for every state s of

T and every operation op E OP, there is at most one edge from s labeled (op, res). T is

non-deterministic otherwise. T is finite if G is finite; T is infinite otherwise.

A.3 Processes and objects

An object is an automaton with two attributes: a unique name and a type. A process is an

automaton with a unique name. A process automaton P satisfies the following properties:

1. There is a distinguished state CRASHED(P) in States(P).

2. The event crash(P) is in In(P).

3. For every state s E States(P), (s,crash(P),CRASHED(P)) is in Steps(P).

45

4. The event crashed(P) is in Out(P), and is enabled in the state CRASHED(P).

5. if (CRASHED(P), e, s) is in Steps(P), then either e = crashed(P), or e is an input

event of P, and s = CRASHED(P).

The above conditions capture the notion that an adversary can crash a process at any

time by generating the input event crash(P) (see 2 and 3); and once it crashes, a process

remains crashed forever (see 5).

A.4 Clock

A clock is an automaton with a single state s, a single output event tick, and a single step

(s, tick, s). It has no input or internal events.

A.5 Concurrent system

A concurrent system consisting of processes PI, P2, • ••, P,_, and objects O1,02,..., Ore, is an

automaton composed from process automata P1,..., Pn, and object automata O1,..., Ore.

We denote such a concurrent system by (P1, P2,.-., Pn; 01,02,..., Ore). A clocked concur-

rent system 15 consisting of P1, • ••, Pn, and objects O1,..., Om has an additional component,

the clock automaton C, and is denoted by (P1,... ,Pn;O1,...,Om;C). The output events

of a process P_ include invoke(Pi,op, Oj), where op is an operation supported by the type

of Oj, and the input events of Pi include respond(Pi,res, Oj), where res is a response.

We refer to the events invoke(Pi,op, Oj) and respond(Pi, res, Oj) as invocations and re-

sponses respectively. An object Oj includes input events invoke(Pi,op, Oj), and output

events respond(Pi, res, Oj). Process and object names are unique, and no two automata

among processes and objects share any internal or output events. This ensures that the

process and object automata are compatible, and therefore, can be composed.

Let a be a sequence of events or a sequence of states and events (for example, a can

be a history or an execution). A response r matches an invocation i in a if i is the latest

event in a that precedes r such that the process and object names of i and r agree. An

operation in a is a pair of events, an invocation and its matching response. A relation <a

reflecting the partial "real time" order of operations in <a is defined as follows: op <_ op'

if the response of op precedes the invocation of op _ in 0. Two operations unrelated by <a

are said to be concurrent in a. An invocation is pending in a if it has no matching response.

Complete(a) denotes the maximal subsequence of a in which there is no pending invocation.

A history H of a concurrent system ,9 = (P1, P2,...,Pn;OI,02,...,Om) is k.well-

formed if, for each pair Pi, 01, (HIPi)I0i begins with an invocation, and alternates invo-

cations and matching responses 16, and HIPi has at most k pending invocations in H. The

lSClock ensures that the system execution progresses, no matter how the other components in the system

behave. This simplifies the definition of wait-free implementations, especially walt-fxee implementations that

must tolerate non-responsive failures.

lSWith the exception of the last invocation which may not have a matching response

46

concurrentsystem S is k-well-formed if every history of S is k-well-formed. Intuitively, in

a k-well-formed concurrent system, if an invocation of a process P on object O is pending,

then P may not issue a new invocation on O; however, P may issue an invocation on a

different object O I as long as the number of pending invocations from P does not exceed

k. The need for a k-well-formed system, for k > 1, arises while designing implementations

that tolerate non-responsive failures of the underlying objects. For example, it is easy to

see that any implementation that has to be wait-free in spite of the crash of at most t un-

derlying objects must be at least (t + 1)-well-formed. We assume that a concurrent system

is 1-well-formed unless specifically mentioned otherwise.

In this paper, we restrict our attention to only fair executions of concurrent systems.

Thus, when we refer to infinite executions in this section and in Sections 3 and 4, we

implicitly assume they are fair.

A.6 Linearizability

The behavior of an object 0 in an execution E, denoted by B(O, E), is the subsequence of

invocation and response events of O in E.

A behavior B is linearizable with respect to type T if B can be extended to B' by append-

ing zero or more responses, and there is a sequence a = invoke(Pil, opl, 0), respond(Pin, resl, 0),

invoke(Pi2 , op2, O), respond(Pi2 , res2, O), ..., invoke(Pi, , opl, O), respond(Pit, rest, O), such
that:

1. a is a permutation of the events in Complete(B').

2. <BC__<a.

3. (opl,resl), (op2, res2),.. .,(opl, resl) is consistent with respect to T.

Informally, extending B to B' captures the notion that some operations in B may

have taken effect,a/though the responseshave not appeared yet. The definitioncaptures

the notion that processesappear to interleaveat the granularityof complete operations

on O (as isevident from the form of ffand Condition I), the notion that thisapparent

interleavingrespectsthe realtime order (Condition2) and the semanticsofthe objecttype

T (Condition3).

An object O is linearizable with respect to type T in a finite execution E of a concurrent

system if B(O, E) is linearizable with respect to T.

Object O is linearizable with respect to type T in an infinite execution E of a concurrent

system if and only if it is linearizable with respect to T in every finite prefix of E.

A.7 Wait-freedom

Let E be an execution of a concurrent system. An object O is wait-free in E if either (i) E

is finite, or (ii) every invocation on O by a process that does not crash in E has a matching

response.

47

A.8 Correctness

An object O is correct in an ezecution E if one of the following holds:

• O is is wait-free in E, and O is linearizable with respect to its type in E.

• More than N(T) distinct processes have invocations on O in E.

The latter condition captures the notion that an object need not exhibit any sane

behavior if accessed by more processes than the object is intended for.

An object O fails in an execution E if it is not correct in E.

A.9 Implementations

Let Obj(T) denote the universe of objects whose type is T. Let £ = (Tt, T2,..., Tn) be a list

of object types (2_'s are not necessarily distinct). A wait-free implementation of T from £

for processes P1, P2,..., PN(T) is a function 2": Obj(Tt) × Obj(T2) × ... Obj(T_) --_ Obj(T)

satisfying the following conditions:

.

.

3.

o

5.

If O = 2"(O1,O2,..., On), the automaton of O has the structure of a concurrent sys-

tem: (F1,];'2,..., FN(T); Or, O2,..., On), for some process automata F1,];'2,..., FN(T).

Fi and Fi (i _ j) have no common events.

If 0 = Z(Ot,..., On), each input event invoke(Pi, op, O) of O is an input event of F/;

each output event respond(Pi, res, O) of O is an output event of Fi.

Each output event crashed(Pi) of Pi is matched with the input event crash(Fi) of Fi.

Let Or, O2,..., On be any distinct objects of type T1, T2,..., Tn, respectively, and O =

2"(O1,..., On). For every execution E of the docked concurrent system (P1, P2,. •., PN(T); (_O;C).

if Or, O2,..., On are correct in E, then (3 is also correct in E.

In the above, the Fi's are called the front-ends, 0 = 2"(01,02,...,0n) is called a

derived object of the implementation 2", and O1, O2,..., On are called the base objects of (3.

The front-end Fi models the procedure Apply (called by process P/ to execute operations

on a derived object) alluded to in the informal model of Section 2.

Condition 1 states that a derived object is constituted by base objects and access

procedures (front-ends).

Condition 2 captures the notion that the execution of a step of the implementation by

one process Pi cannot affect another process Pj.

Condition 3 captures the notion that (i) invoking an operation on O, by process Pi

causes the front-end Fi to be activated, and (ii) the value returned by the front-end Fi is

the response of (3.

48

Condition4 conditioncapturesour intuition that whena process Pi crashes, the front

end Fi of that process must stop executing.

Condition 5 ensures that a derived object behaves correctly when its base objects do.

All implementations studied in this paper are wait-free. Hereafter we write "imple-

mentation" as shorthand for "wait-free implementation". The implementation 2" is a self-

implementation if T1 = T2 = T_ = T. The resource complexity of Z is n, the number

of base objects that make up a derived object of the implementation.

B Models of failure

Failure models for objects were explained in Section 3 using the informal terminology of
Section 2. We present here the formal definitions of these failure models based on the formal

model developed in Appendix A.

The failure models fall into two broad classes: responsive and non-responsive. As we

will see, in most models of failure, an object O of type T that fails may return a response

that is not in RES(T). When a process P gets such a response from O, it knows that O is

faulty. Thus, it is reasonable to assume that P does not invoke operations on O thereafter.

We restrict our attention to executions in which this assumption holds.

B.1 Responsive models of failure

Responsive failure models share the following property: even an object that fails in an
execution E, is wait-free in E.

B.I.I R-crash

An object O fails by R-crash in an execution E of a concurrent system iff it fails in E, and
the following hold in E:

1. O is wait-free.

.

.

Every response from O either belongs to RES(T) or is 2_ (where _l_is a distinguished

value not in RES(T), T being the type of O).

If op <E oPt and the response for op is 2-, then the response for op _ is also 2-. This is
the "once _1_,everafter 2-" property of R-crash.

. Recall B (O, E), the behavior of O in E. Let B I be obtained by removing all op erations 1T

in B(O, E) whose responses are _k. B _ is linearizable with respect to the type of O.

This property captures the notion that an object failing by R-crash behaves correctly
until it fails.

lrRemoving an operation involves removing the invocation and the response of that operation.

49

B.I.2 R-omission

An informal motivation for this model can be found in Section 3.1.2, and a formal justifi-

cation in Section 7.

An object O fails by R-omission in an execution E of a concurrent system iff it fails in

E, and the following hold in E:

,

2.

.

C) is wait-free.

Every response from O either belongs to RES(T) or is 2- (where 2_ is a distinguished

value not in RES(T), T being the type of O).

Let B I be obtained from B(O, E) by removing all response events that get 2-. Then

B r is linearizable with respect to the type of O.

Property 3 captures the notion that a failed operation of P appears like an incomplete

operation. Also notice the subtle difference in the way we obtain B _ from B(O, E) for R-

crash and for R-omission. We urge the reader to understand its implications on the failure
semantics of the two models.

B.I.3 R-arbitrary

An object fails by R-arbitrary in an ezecution E of a concurrent system iff it fails in E, and
is wait-free in E.

B.2 Non-responsive models of failure

Each responsive model of failure has its non-responsive counter-part. The difference is that,

with non-responsive failures, an object that fails in an execution E may not be wait-free in

E.

B.2.1 Crash

An object O fails by crash in an execution E of a concurrent system iff it fails in E, and

the following hold in E:

1. B(O, E) is]Jnearizable with respect to the type of O.

2. The total number of responses from O in E is finite.

Property 2 captures the notion that an object that fails by crash does so at some finite

point in the execution. Hence the number of times it will have responded in that execution
must be finite.

5O

B.2.2 Omission

An object O fails by omission in an execution E of a concurrent system iff it fails in E, and

B(O, E) is linearizable with respect to the type of O.

B.2.3 Arbitrary

An object O fails by arbitrary in an execution E of a concurrent system iff it fails in E.

C Definition of fault-tolerant implementations

An implementation I of type T for processes P1, P2,..., PN(T) is t-tolerant for failure model

A4 if every derived object O of Z has the following property: In every execution of the

clocked concurrent system (P1, P2,..., PN(T); O; C), if at most t base objects of (9 fail, and
they fail by A4, then (P is correct.

An implementation Z of type T for processes P1, P2,-.., PN(T) is gracefully degrading

for failure model A4 if every derived object O of Z has the following property: In every

execution of the clocked concurrent system (P1, P2,.-. ,PN(T); O;C), if all base objects of
O that fail, fail by A4, then either O is correct or it fails by A4.

D Type definitions

Recall that an object type T is defined (Section 2) as a tuple (N, OP, RES, G), where N

is the number of processes supported by an object O of type T, OP is a set of operations

supported by O, RES is a set of result values, and G is a graph giving the sequential

specification of O. In this appendix, we specify OP, RES and G for most object types that

occur in the paper. The parameter N is unspecified: each choice of N results in a different

type. Similarly, in most cases, the initial state of G is not specified. A new type results for
each choice of an initial state.

51

OP = {compare&swap(v1, v2)lvl, %_2 are booleans}

RES = {0, 1}

Object State:

X, a boolean

comparekswap(vl, V2)

ifX=vl then

X := v2

return(X)

Figure 8: Comparekswap

OP = {reset()} U {propose(v)lv E {0,1}}

RES = {0, 1, ack}
Object State:

X E {0, 1, _l_}, initially ±

propose(v)
if X = 2_ then

X:_;

return(X)

reset()
X:=±

return(ack)

Figure 9: Consensus-with-reset

52

OP = (fo_ch&add(v)]v is an integer}

RES = Set of integers

Object State:

X, an integer

let ¢h_tadd(v)

X:=X+v

return(X)

Figure 10: Fetch_add

OP --{enq(v)[visinteger}U {deq()}

RES = {vIv isinteger}U {nil,ack}

Object State:

X, a sequence ofintegers

X:=X.v

return(aek)

a,q()
if X is empty then

return(nil)
else if X = v • X t then

X := X r

return(v)

Figure 11: Queue

53

OF = {read(i),write(v,i),move(i)lv,i 6 {0, 1}}

RES = {o, 1, ack}
Object State:

xo,xl e {o, 1}

read(i)

if i = 0 then

return(Xo)

else return(X1)

write(v, i)
if i = 0 then

X0::v

else X1 := v

return(ack)

move(i)

X_ := Xi
return(ack)

Figure 12: Move

OP = {write(v)l v is integer} U {read()}

RES = {v I v is integer} U { ack}

Object State:

X, aa integer

reaaO
retur.(X)

write(v)
V:=V

return(ack)

Figure 13: (Unbounded) Register

54

OP = {push(v)]v is integer} U {pop()}

RES = {v] v is integer} U {nil, ack}

Object State:

X, a sequence of integers

X:=X'v

return(ack)

pop()
X is empty then

return(nil)

else ifX = X' •v then

X := X'

return(v)

Figure 14: Stack

OP = {,rite(v)tv 6 {0,I}} U {read()}

RES = {0, 1,ack}

Object State:

X 6 {0, 1, _L}, initially _5

read()

return(X)

write(v)

_X= ± then

X:=_

return(ack)

Figure 15: Sticky-bit

55

OR = {read(i),write(v,i), swapOlv, i E {0_ I}}}

RES = {0, 1,ack}

Object State:

Xo,X_• {o,I}

read(i)

ifi = 0 then

return(Xo)

else return(X1)

wr£te(v,i)

ifi = 0 then

XO :_ V

else XI := v

return(ack)

-'-apO
temp = Xo

)2o := X1

X1 := temp

return(ack)

Figure 16: Swap

56

OP = {test&set(), reset()}

RES = {0, 1, ack}

Object State:

x e {o,1}

test&set()

y:=X

X:=O

return(y)

X:=I

retura(ack)

Figure 17: Test&set

57

